Parte de libro

Sarmiento, G.S.; Bongiovanni, M.V. "Modeling of case hardening" (2008) Handbook of Thermal Process Modeling Steels:627-672
Estamos trabajando para incorporar este artículo al repositorio

Abstract:

Many metallic components require different properties near the surface than in the bulk of the material. Surface engineering is rapidly developing to enable the properties of the surface to be customized (by modifying the near-surface material or by application of coating), without damaging the bulk properties of the component [1]. © 2009 by Taylor & Francis Group, LLC.

Registro:

Documento: Parte de libro
Título:Modeling of case hardening
Autor:Sarmiento, G.S.; Bongiovanni, M.V.
Filiación:Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
Facultad de Ingeniería, Universidad Austral, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Año:2008
Página de inicio:627
Página de fin:672
Título revista:Handbook of Thermal Process Modeling Steels
Título revista abreviado:Handb. of Thermal Process Modeling Steels
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814200_v_n_p627_Sarmiento

Referencias:

  • Shercliff, R., Modelling and selection of surface treatments for steels (2002) Advanced Engineering Materials, 4 (6), p. 397
  • Shercliff, R., Beresford, F.C., (2001) Cambridge University Engineering Department Technical Report, , CUED/C-MATS/TR254, December
  • Przyłęcka, M., Design of carburizing and carbonitriding processes (2004) Handbook of Metallurgical Process Design, p. 507. , Totten, G., Funatani, K., and Xie, L.Marcel Dekker, New York
  • Anon, Surface hardening (2002) Industrial Heating, LXIX, 12, pp. 50-56. , December
  • Fortunier, R., Leblond, J.B., Bergheau, J.M., Computer simulation of thermochemical treatments: Modelling diffusion and precipitation in metals (2000) Journal of Shanghai Jiaotong University (Science), 5 (1), p. 303
  • Réti, T., Residual stress in carburizing, carbonitrided, and case-hardened components (2002) Handbook of Residual Stress and Deformation, p. 189. , Totten, G., Howes M., and Inoue, T.ASM International, Materials Park, OH
  • Minkoff, I., (1992) Materials Processes—A Short Introduction, , Springer Verlag, New York
  • Collin, R., Gunnarson, S., Thulin, D., A mathematical model for predicting carbon concentration profiles of gas-carburized steel (1972) Journal of the Iron and Steel Institute, p. 785. , October
  • Parrish, G., (1999) Carburizing: Microstructures and Properties, , 1st ed., ASM International, Materials Park, OH
  • Kasperma, J.H., (1980) Carburizing Theory and Practice. Applied Research and Development, , Internal Report, April
  • Collin, R., Gunnarson, S., Thulin, D., Influence of reaction rate on gas carburizing of steel in a CO-H2-CO2-H2O-CH4-N2 atmosphere (1972) Journal of the Iron and Steel Institute, 210 (10), p. 777
  • Dawes, C., Tranter, D.F., Production gas carburising control (1974) Heat Treatment of Metals, 4, p. 121
  • McLellan, R.B., Ko, C., The diffusion of carbon in austenite (1988) Acta Metallurgy, 36 (3), p. 531
  • Rodionov, A.V., Calculation of carbon gradient curves in carburizing in an activated gaseous atmosphere (1991) Metal Science and Heat Treatments, 33 (7), p. 522
  • Raić, K.T., Mass transfer on heterogeneous surface of foil in laminar surrounding (1993) ISIJ International, 33 (12), p. 1281
  • Raić, K.T., Control of gas carburizing by the diagram method (1993) Scandinavian Journal of Metallurgy, 22, p. 50
  • Holm, T., Arvidsson, L., Thors, T., A concept for faster carburizing in continuous furnaces (1998) Presented at 11Th Congress of the International Federation for Heat Treatment and Surface Engineering and the 4Th ASM Heat Treatment and Surface Engineering Conference, p. 461. , Europe, Florence, Italy, Oct. 19-21
  • Poor, R., Verhoff, S., (2002) New Technology is the Next Step in Vacuum Carburizing, , Industrial Heating, October
  • Prawoto, Y., Carbon restoration for decarburized layer in spring steel (2004) Journal of Materials Engineering and Performance, 13 (5), p. 627
  • Schmidt, H.-P., Grohmann, P., Wagendorfer, G., Hydrocarb—A new carburizing process to reduce internal oxidation of metals (2006) Presented at 3Rd International Conference on Thermal Process Modelling and Simulation (IFHTSE), , Budapest
  • Gianotti, E., Grain boundary oxidation in endothermic gas carburising process (2006) Proceedings of 7Th International Tooling Conference, p. 481. , Torino, Italy, May 1-5
  • Koloszsváry, Z., Residual stresses in nitriding (2002) Handbook of Residual Stress and Deformation of Steel, p. 209. , Totten, G., Howes, M., and Inoue, T.ASM International, Materials Park, OH
  • Practical Nitriding and Ferritic Nitrocarburizing, ASM International, , Materials Park, OH, Product Code 6950
  • Krukovic, M.G., Simulation of the nitriding process (2004) Metal Science and Heat Treatment, 46 (1-2), p. 25
  • Mittemeijer, E.J., Slycke, J., Thermodynamic activities of nitrogen and carbon imposed by gaseous nitriding and carburising atmospheres (1996) Surface Engineering, 12 (2), p. 152
  • Mittemeijer, E.J., Somers, M.A.J., Thermodynamics, kinetics and process control of nitriding (1997) Surface Engineering, 13 (6), p. 483
  • Edenhofer, B., Physical and metallurgical aspects of ionitriding (1974) Heat Treatment of Metals, 1, p. 23
  • Peartree, R.J., Demonstration of Nitrogen-Based Carburizing Atmosphere (1981) Air Products and Chemical, Inc. Allentown, Pensylvania, , Work performed under DoE contract DE-AC07-79CS40234. September
  • Wells, A., Bell, T., Structural control of the compound layers formed during ferritic nitrocarburising in methanol=ammonia atmospheres (1983) Heat Treatment of Metals, 10 (2), p. 39
  • Slycke, J., Mittemeijer, E.J., Kinetics of gaseous nitrocarburising process (1989) Surface Engineering, 5 (2), p. 125
  • Grigor’Ev, V.S., Solodkin, G.A., Shevchuk, S.A., Kinetics of ion carbonitriding of constructional steels with direct hardening (1991) Metal Science and Heat Treatment, 33 (7), p. 528
  • Darilion, G., (2006) Online Monitoring and Control of Thermo Chemical Heat Treatment Processes by near Infrared Technology, Presented at 3Rd International Conference on Thermal Process Modelling and Simulation, , (IFHTSE), Budapest
  • Tong, W.P., Nitriding iron at lower temperatures (2003) Science, 299, p. 686
  • Michalski, J., (2006) Influence of Heating Stage Charge on Produce Nitrides Layer on Steel during Controlled Gas Nitriding Process, Presented at 3Rd International Conference on Thermal Process Modelling and Simulation, , (IFHTSE), Budapest
  • Braam, J.J., Van Der Zwaag, S., A microstructural model for predicting hardness profiles of Fe-Cr alloys after nitriding (1999) Philosophical Magazine A, 79 (5), p. 1193
  • Yan, M., Yan, J., Bell, T., Numerical simulation of nitrided layer growth and nitrogen distribution in ε-Fe2-3 N, g’-Fe4N and α-Fe during pulse plasma nitriding of pure iron (2000) Modelling and Simulation in Material Science and Engineering, 8, p. 491
  • Arzamasov, B.N., Panayoti, T.A., (1998) Ionic Composition of the Cathode Area at Ion Nitriding, in 11th Congress of the International Federation for Heat Treatment and Surface Engineering, 1, p. 311. , 4th ASM Heat Treatment and Surface Engineering Conference
  • Lefèvre, L., Measurements of nitrogen atom loss probability versus temperature on iron surfaces (1999) Surface and Coatings Technology, 1244, pp. 116-119
  • Straumal, B.B., Ionic nitriding of austenitic and ferritic steel with the aid of a high aperture hall current accelerator (2001) Defect and Diffusion Forum, 1457, pp. 194-199
  • Alsaran, A., Study on compound layer formed during plasma nitrocarburizing of AISI 5140 steel (2003) Journal of Materials Science Letters, 22 (4), p. 1759
  • Kula, P., (2006) Vacuum Nitrocarburizing and Efficient Vacuum carburizing—the New Options of FINE-CARB Technology, Presented at 3Rd International Conference on Thermal Process Modelling and Simulation, , (IFHTSE), Budapest
  • Okumiya, M., Inaba, K., Fujita, M., (2006) Surface Hardening of Steel by Novel Heat Treatment Method “N-QUENCH”, , presented at IFHTSE
  • Garzón, C.M., Tschiptschin, A.P., Growth kinetics of martensitic layers during high temperature gas nitriding of a ferritic-martensitic stainless steel (2004) Materials Science and Technology, 20 (1), p. 1
  • Tschiptschin, A.P., (2000) Thermodynamics and Kinetics of Nitrogen Absorption in Low Carbon Martensitic Stainless Steels, , THERMEC
  • Pranevičius, L., The role of surface roughness on the mechanism of ion nitriding of an austenitic stainless steel (2000) Materials Science (Medžiagotyra), 6 (3), p. 180
  • Thaiwatthana, S., Comparison studies on properties of nitrogen and carbon S phase on low temperature plasma alloyed AISI 316 stainless steel (2002) Surface Engineering, 18 (6), p. 433
  • Figueroa, C.A., Wisnivesky, D., Alvarez, F., Effect of hydrogen and oxygen on stainless steel nitriding (2002) Journal of Applied Physics, 92 (2), p. 764
  • Kang, S.-H., Im, Y.-T., Three-dimensional thermo-elastic-plastic finite element modeling of quenching process of plain-carbon steel in couple with phase transformation (2007) International Journal of Mechanical Sciences, 49, pp. 423-439
  • Dowling, W., Development of Carburizing and Quenching Simulation Tool: Program Overview (1996) Proceedings of 2Nd International Conference on Quenching and Control of Distortion, p. 349. , ASM International, Materials Park, OH
  • Ågren, J., Numerical treatment of diffusional reactions in multicomponent alloys (1982) Journal of Physics and Chemistry of Solids, 43 (4), p. 385
  • Andersson, J.O., Ågren, J., Models for numerical treatment of multicomponent diffusion in simple phases (1992) Journal of Applied Physics, 72 (4), p. 1350
  • Brünner, P., Weissohn, K.H., Computer simulation and control of carburization and nitriding processes (1994) Material Science Forum, 699, pp. 163-165
  • Fortunier, R., Leblond, J.B., Pont, D., Recent advances in the numerical simulation of simultaneous diffusion and precipitation of chemical elements in steels (1995) Presented at Phase Transformations during the Thermal/Mechanical Processing of Steel, p. 357. , Vancouver, BC, Canada; August, 20-24
  • Manolov, V., Yotova, A., Iliev, O., Applications of mathematical modeling in metal science (1999) Journal of Materials Science of Technology, 7 (1), p. 11
  • Constantineau, J.P., Modified predominance diagrams for gas-solid reactions (2000) Metallurgical and Materials Transactions B, 31B (6), p. 1429
  • Nakasaki, K., Inoue, T., (2000) Metallo-Thermo-Mechanical Simulation of Laser-Quenching Process of Some Steels, , 20th ASM Heat Treating Society Conference Proceedings, St. Louis MO
  • Somers, M.A.J., Thermodynamics, kinetics and microstructural evolution of the compound layer; a comparison of the state of knowledge of nitriding and nitrocarburising (2000) Heat Treatment of Metals, 27, p. 92
  • Ferguson, B.L., (2002) Predicting the Heat-Treat Response of a Carburized Helical Gear, Gear Technology, p. 20. , November/December
  • Maksymovych, H.H., Fedirko, V.M., Pavlyna, V.S., High temperature physicochemical mechanics of materials (2002) Materials Science, 38 (2), p. 161
  • Sundelöf, E., (2003) Modelling of Reactive Gas Transport, Licentiate Thesis, Kungl Tekniska Högskolan, , Institutionen För Numerisk Analys Och Datalogi, Universitet Stockholms
  • Sugimoto, T., Watanabe, Y., Evaluation of important factors affecting quench distortion of carburized hypoid gear with shaft by using computer simulation methods, Transactions of Materials and Heat Treatment (2004) Proceedings of the 14Th IFHTSE Congress, 25 (5), p. 480
  • Filetin, T., Žmak, I., Novak, D., Nitriding parameters analyzed by neural network and genetic algorithm (2004) Journal De Physique IV France, 120, p. 355
  • Inoue, T., Macro-meso-and micro-scopic metallo-thermo-mechanics application to phase transformation incorporating process simulation (2005) Inzynieria Powierzchni, 1, p. 23
  • Geiger, G.H., Poirier, D.R., (1973) Transport Phenomena in Metallurgy, , Addison-Wesley, Reading, MA
  • Snyder, R.B., Natesan, K., Kassner, T.F., Kinetics of the carburization-decarburization process of austenitic stainless steels in sodium (1974) Journal of Nuclear Materials, 50, p. 259
  • Goldstein, J.I., Moren, A.E., Diffusion modeling of the carburization process (1978) Metallurgical Transactions A, 9A, p. 1515
  • Buslovich, N.M., Makhtinger, E.Y.A., Mikhailov, L.A., Laws governing the interaction of the gaseous medium with the surface of the metal in the process of carburizing (1979) Metal Science and Heat Treatment, 21 (6), p. 442
  • Thete, M.M., Simulation of gas carburizing: Development of computer program with systematic analysis of process variables involved (2003) Surface Engineering, 19 (3), p. 217
  • Jiang, D.E., Carter, E.A., Carbon dissolution and diffusion in ferrite and austenite from first principles (2003) Physical Review B, p. 67. , 214103
  • Ochsner, A., Gegner, J., Mishuris, G., Effect of diffusivity as a function of the method of computation of carbon concentration profiles in steel (2004) Metal Science and Heat Treatment, 46 (3-4), p. 148
  • Yin, R., Thermodynamic roles of metallic elements in carburization and metal dusting (2004) Oxidation of Metals, 61 (3-4), p. 323
  • Sobusiak, T., Carbon transfer coefficient in carburizing processes at thermodynamic equilibrium atmospheres (2005) Inzynieria Powierzchni, 1, p. 3
  • Palaniradja, K., Alagumurthi, N., Soundararajan, V., Optimization of process variables in gas carburizing process: A taguchi study with experimental investigation on SAE 8620 and AISI 3310 steels (2005) Turkish Journal of Engineering and Environmental Sciences, 29, p. 279
  • Bingzhong, X., Yingzhi, Z., Collision dissociation model in ion nitriding (1987) Surface Engineering, 3 (3), p. 226
  • Stickels, C.A., (1988) Computer Models for Gas Carburizing, , Industrial Heating, October
  • Sun, J., Bell, T., A numerical model of plasma nitriding of low alloy steels (1997) Materials Science and Engineering A, A224, p. 33
  • Du, H., Ågren, J., Theoretical treatment of nitriding and nitrocarburizing of iron (1996) Metallurgical and Materials Transactions A, 27A, p. 1073
  • Kroupa, A., Carbide reactions and phase equilibria in low-alloy Cr-Mo-V steels tempered at 773-993 K Part II: Theoretical calculations (1998) Acta Materials, 46 (1), p. 39
  • Sopousek, J., Kroupa, A., Vrest’Al, J., Dojiva, R., (1993) CALPHAD, 17, p. 229
  • Hu, M.-J., Mathematical modeling and computer simulation of nitriding (2000) Materials Science and Technology, 16 (5), p. 547
  • Duh, J.-G., Wang, C.H., Nitriding kinetics of Fe-Al-Mn-Cr-C alloys at 10008C (2000) Journal of Material Science, 25 (5), p. 2615
  • Tschiptschin, A.P., Predicting microstructure development during high temperature nitriding of martensitic stainless steels using thermodynamic modeling (2002) Material Research, 5 (3), pp. 257-262
  • Petrova, L.G., Modeling the nitriding kinetics of multicomponent alloys (2002) Metal Science and Heat Treatment, 44 (9-10), p. 431
  • Ratajski, J., Modelling of structure and material properties in the nitriding process (2005) Inzynieria Powierzchni, 1, p. 49
  • Dupen, B.M., Morral, J.E., Law, C.C., Finite element modeling of carburizing for alloy steels (1993) ASTM Special Technical Publication, 1195, p. 61
  • Engström, A., Höglund, L., Ågren, J., Computer simulation of carburization in multiphase systems (1994) Material Science Forum, 725, pp. 163-165
  • Grabke, H.J., Supersaturation of iron with nitrogen, hydrogen or carbon and the consequences (2004) Materiali in Tehnologije, 38 (5), p. 211
  • Ju, D.-Y., Ito, Y., Inoue, T., (2006) Simulation and Experimental Verification of Carburised and Nitride Quenching Process, in 3Rd International Conference on Thermal Process Modelling and Simulation, , Budapest
  • Gao, W., Long, J.M., Kong, L., Hodgson, P.D., Influence of the geometry of an immersed steel workpiece on mass transfer coefficient in a chemical heat treatment fluidized bed (2004) ISIJ International, 44 (5), pp. 869-877
  • Kang, S.-H., Im, Y.-T., Finite element investigation of multi-phase transformation within carburized carbon steel (2007) Journal of Materials Processing Technology, 183, pp. 241-248
  • Johnson, W.A., Mehl, R.F., Reaction kinetics in processes of nucleation and growth (1939) Transactions AIME, 135, pp. 416-458
  • Avrami, M., Kinetics of phase change I (1939) Journal of Chemical Physics, 7, pp. 1103-1112
  • Scheil, E., Anlaufzeit der Austenitumwandlung (1935) Arch. Eisenhuttenwes., 12, pp. 564-567
  • Koistinen, D.P., Marburger, R.E., A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and carbon steels (1959) Acta Metallurgy, 7, pp. 59-60
  • Agarwal, P.K., Brimacombe, J.K., Mathematical model of heat flow and austenite-pearlite transformation in eutectoid carbon steel rods for wire (1981) Metallurgical Transactions, 12B, pp. 121-133
  • Kamat, R.G., Hawbolt, E.B., Brown, L.C., Brimacombe, J.K., The principle of additive and the proeutectoid ferrite transformation (1992) Metallurgical Transactions, A, 23A, pp. 2469-2480
  • Denis, S., Farias, D., Simon, A., Mathematical model coupling phase transformations and temperature evolution in steels (1992) ISIJ International, 32, pp. 316-325
  • Lusk, M., Krauss, G., Jou, H.-J., A balance principle approach for modeling phase transformation kinetics (1995) Journal De Physique IV, C8, pp. 179-284
  • Bammann, D., Development of a carburizing and quenching simulation tool: A material model for carburizing steels undergoing phase transformations (1996) Proceedings of the 2Nd International Conference on Quenching and the Control of Distortion, p. 367. , Cleveland, OH
  • Ju, D.Y., Liu, C., Inoue, T., Numerical modeling and simulation of carburized and nitrided quenching process (2003) Journal of Materials Processing Technology, 143-144, pp. 880-885
  • Heming, C., Xieqing, H., Jianbin, X., Comparison of surface heat transfer coefficients between various diameter cylinders during rapid cooling (2003) Journal of Materials Processing Technology, 138, pp. 399-402
  • Pan, J., Li, Y., Li, D., The application of computer simulation in the heat treatment process of a large- scale bearing roller (2002) Journal of Materials Processing Technology, 122, pp. 241-248
  • Sarmiento, G.S., Gastón, A., Vega, J., Inverse heat conduction coupled with phase transform- ation problems in heat treating process (1998) COMPUTATIONAL MECHANICS—New Trends and Applica- Tions, , E. Oñate and S.R. IdelsohnCD-Book. Part VI, Section 12.1, Paper 16, CIMNE, Barcelona
  • Sarmiento, G.S., Castro, M., Totten, G.E., Webster, G.E., Cabré, M.F., Jarvis, L., (2001) Modeling Residual Stresses in Spring Steel Quenching, , ASM Heat Treat 2001, Indianapolis, November 5-8
  • Penha, R.N., Canale, L.C.F., Totten, G.E., Sarmiento, G.S., Ventura, J.M., Simulation of heat transfer and residual stresses from cooling curves obtained in quenching studies (2006) Journal of ASTM International, 3 (5). , Paper ID JAI 13614
  • Padilha, A.F., Randle, V., Machado, I.F., Microstructure and microtexture changes during solution nitriding to produce austenitic case on ferritic-austenitic duplex stainless steel (1999) Materials Science and Technology, 15 (9), p. 1015
  • Turpin, T., Dulcy, J., Ganois, M., Carbon diffusion and phase transformations during gas-carburizing of high-alloyed stainless steels: Experimental study and theoretical modeling (2005) Metallurgical and Materials Transactions A, 36A, p. 2751
  • Lütjens, J., (2006) FEM Simulation of Carbon Diffusion and Phase Transformations in Dual Phase and Trip Steels, Presented at 3Rd International Conference on Thermal Process Modelling and Simulation, , (IFHTSE), Budapest
  • Cristinacce, M., (2001) Heat Treatment of Metals: Distortion in Case Carburized components—the Steelmaker’s View, , Technical Paper Prod/A6, Corus Engineering Steels
  • Loh, N.L., Siew, L.W., Residual stress profiles of plasma nitrided steels (1999) Surface Engineering, 15 (2), p. 137
  • Clyne, T.W., Residual stresses in thick and thin surface coatings (2001) Encyclopaedia of Materials: Science and Technology, Section 4.1—Elasticity and Residual Stresses, , P.J. Withers, Elsevier, Oxford, UK
  • Prantil, V.C., Simulating distortion and residual stresses in carburized thin strips (2003) Transactions of the ASME, 125, p. 116
  • Jurči, P., Stolař, P., Distortion behaviour of gear parts due to carburizing and quenching with different quenching media (2006) Presented at 3Rd International Conference on Thermal Process Modelling and Simulation, , (IFHTSE), Budapest
  • Acht, C., Simulation of the influence of carbon profile and dimensions on distortion behaviour of SAE 5120 discs (2006) Presented at 3Rd International Conference on Thermal Process Modelling and Simulation (IFHTSE), , Budapest, Paper O-III/4
  • El-Shazly, The effect of hard coating properties on substrate stresses under tribological loads (1999) Materials and Manufacturing Processes, 14 (2), p. 243
  • Babul, T., Kucharieva, N., Nakonieczny, A., Senatorski, J., (2005) The Mechanical Properties of Tool Steels with Diffusion Carbon and Nitrocarbon Layers, in 1St International Conference on Heat Treatment and Surface Engineering of Tools and Dies, , Pula, Croatia
  • Karami, M.B., Ipek, R., An evaluation of the using possibilities of the carbonitrided simple steels instead of carburized low alloy steels (Wear properties) (1997) Applied Surface Science, 119, p. 25
  • Selçuk, B., Ipek, R., Karamis, M.B., A study on friction and wear behavior of carburized, carbonitrided and borided AISI 1020 and 5115 steels (2003) Journal of Materials Processing Technology, 141, p. 189
  • Genel, K., Demirkol, M., Effect of case depth on fatigue performance of AISI 8620 carburized steel (1999) International Journal of Fatigue, 21, p. 207
  • Spektor, B.A., Baldaev, V.A., Simakov, A.A., Decreasing the allowance in tooth grinding of carburized gears for heavily loaded reducers (1988) Khimicheskoe I Neftyanoe Mashinostroenie, 6, p. 38
  • Izciler, M., Tabur, M., Abrasive wear behavior of different case depth gas carburized AISI 8620 gear steel (2006) Wear, 260, p. 90
  • Lawcock, R., (2006) A Better Understanding of Fatigue Factors in Powder-Metal Parts-Along with the Tests Used to Determine Them-Will Result in Stronger, , more dependable gears, Gear Solutions, October
  • Höhn, B.R., Oster, P., Schrade, U., (2005) Studies on the Micropitting Resistance of Case-Carburized Gears-Industrial Application of the New Calculation Method, , International Conference on Gears, VDI-Berichte 1904, Garching, Bavaria, Germany
  • Berns, H., Pyzalla, A., Microstructure and residual stresses of stainless steels case hardened with nitrogen (2004) Surface Engineering, 20 (6), p. 459
  • Hirsch, K., Residual stress-affected diffusion during plasma nitriding of tool steels (2004) Metallurgical and Material Transactions A, 35A (11), p. 3523
  • Sambucaro, G., Sánchez Sarmiento, G., (2007) Computer Modeling of Carburization of Wedge Plates of Steels, Presented at 5Th Latinamerican Conference of Abaqus Users, , Córdoba, Argentina, October 1-2
  • Crank, J., (1975) The Mathematics of Diffusion, , Oxford, Clarendon
  • Lifang, X., Yan, M., (1989) Acta Metallurgica Sinica, 2, p. 18
  • Borgenstam, A., Engström, A., Höglund, L., Ägren, J., (2000) Journal of Phase Equilibrium, 21, pp. 269-280
  • Engström, A., Höglund, L., Ägren, J., (1994) Metallurgical Materials Transactions, A., 25A, pp. 1127-1134
  • Cubberly, W.H., Masseria, V., Kirkpatrick, C.W., Sanders, B., (1986) Heat Treating, 9Th Ed., Metals Handbook, , ASM International, Materials Park, OH
  • Woodard, P.R., Chandrasekar, S., Yank, H.T.Y., Analysis of temperature and microstructure in the quenching of steel cylinders (1999) Metallurgical Materials Transactions, B30, pp. 815-822

Citas:

---------- APA ----------
Sarmiento, G.S. & Bongiovanni, M.V. (2008) . Modeling of case hardening. Handbook of Thermal Process Modeling Steels, 627-672.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814200_v_n_p627_Sarmiento [ ]
---------- CHICAGO ----------
Sarmiento, G.S., Bongiovanni, M.V. "Modeling of case hardening" . Handbook of Thermal Process Modeling Steels (2008) : 627-672.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814200_v_n_p627_Sarmiento [ ]
---------- MLA ----------
Sarmiento, G.S., Bongiovanni, M.V. "Modeling of case hardening" . Handbook of Thermal Process Modeling Steels, 2008, pp. 627-672.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814200_v_n_p627_Sarmiento [ ]
---------- VANCOUVER ----------
Sarmiento, G.S., Bongiovanni, M.V. Modeling of case hardening. Handb. of Thermal Process Modeling Steels. 2008:627-672.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814200_v_n_p627_Sarmiento [ ]