Parte de libro

Gutiérrez, T.J.; Seligra, P.G.; Jaramillo, C.M.; Famá, L.; Goyanes, S. "Effect of filler properties on the antioxidant response of thermoplastic starch composites" (2017) Handbook of Composites from Renewable Materials. 1-8:337-369
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

In this chapter we will analyze different starch based nanocomposites employing two types of GRAS filler: natural filler or bactericidal filler. In one case, the filler would be acting as a mechanical reinforcement and introducing a tortuous path to the antioxidant diffusion while on the other, the filler itself has antioxidant property. In the last case, the influence of the filler dispersion into the matrix and its interface in the antioxidant efficiency of the composite will be discussed. Starch based composites with natural antioxidants, as well as with natural (cellulose and clay) and/or bactericidal nanofillers such as zinc oxide, titanium dioxide and silver nanoparticles, will be the focus of the discussion. © 2017 Scrivener Publishing LLC.

Registro:

Documento: Parte de libro
Título:Effect of filler properties on the antioxidant response of thermoplastic starch composites
Autor:Gutiérrez, T.J.; Seligra, P.G.; Jaramillo, C.M.; Famá, L.; Goyanes, S.
Filiación:Composite Materials Group, Institute of Materials Science and Technology (INTEMA) (CONICET-UNMdP), Faculty of Engineering, National University of Mar del Plata and National Research Council (CONICET), Mar del Plata, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos (LPM and C), Instituto de Física de Buenos Aires (IFIBA-CONICET), Ciudad Universitaria (1428), Ciudad Autónoma de Buenos Aires, Argentina
Institute of Technology in Polymer and Nanotechnology, UBA-CONICET, Faculty of Engineering, University of Buenos Aires, Buenos Aires, Argentina
Palabras clave:Bactericidal fillers; Natural antioxidants; Natural fillers; Thermoplastic starch composites
Año:2017
Volumen:1-8
Página de inicio:337
Página de fin:369
DOI: http://dx.doi.org/10.1002/9781119441632.ch14
Título revista:Handbook of Composites from Renewable Materials
Título revista abreviado:Handb. of Composites from Renew. Mater.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97811194_v1-8_n_p337_Gutierrez

Referencias:

  • Abdullah, N., Kamarudin, S.K., Titanium dioxide in fuel cell technology: An overview (2015) J. Power Sources, 278, p. 109
  • Abreu, A.S., Oliveira, M., De Sá, A., Rodrigues, R.M., Cerqueira, M.A., Vicente, A.A., Machado, A.V., Antimicrobial nanostructured starch based films for packaging (2015) Carbohydr. Polym, 129, p. 127
  • Alebooyeh, R., Nafchi, A.M., Jokar, M., The Effects of ZnO nanorods on the characteristics of sago starch biodegradable films (2012) J. Chem. Health Risks, 2, p. 13
  • Alemdar, A., Sain, M., Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties (2008) Compos. Sci. Technol, 68, p. 557
  • Allahverdiyev, A.M., Abamor, E.S., Bagirova, M., Rafailovich, M., Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites (2011) Future Microbiol., 6, p. 933
  • Ammendolia, M.G., Iosi, F., De Berardis, B., Guccione, G., Superti, F., Conte, M.P., Longhi, C., Listeria monocytogenes behaviour in presence of non-UV-irradiated titanium dioxide nanoparticles (2014) PLOS one, 9, p. e84986
  • Anthony, R., Xiang, Z., Runge, T., Paper coating performance of hemicellulose-rich natural polymer from distiller’s grains (2015) Prog. Org. Coat., 89, p. 240
  • Aouada, F.A., Mattoso, L.H.C., Longo, E., New strategies in the preparation of exfoliated thermoplastic starch-montmorillonite nanocomposites (2011) Ind. Crop. Prod, 34, p. 1502
  • AshaRani, P.V., Low Kah Mun, G., Hande, M.P., Valiyaveettil, S., Cytotoxicity and genotoxicity of silver nanoparticles in human cells (2009) ACS Nano, 3, p. 279
  • Asharani, P.V., Wu, Y.L., Gong, Z., Valiyaveettil, S., Toxicity of silver nanoparticles in zebrafish models (2008) Nanotechnology, 19, p. 255102
  • Ashraf, M., Abd, E., Ahmed, M., Synthesis of ZnO nanoparticles and studying its influence on the antimicrobial, anticorrosion and mechanical behavior of polyurethane composite for surface coating (2015) Dyes and Pigments, 121, p. 282
  • Avella, M., De Vlieger, J.J., Errico, M.E., Fischer, S., Vacca, P., Volpe, M.G., Biodegradable starch/clay nanocomposite films for food packaging applications (2005) Food Chem, 93, p. 467
  • Averous, L., Biodegradable multiphase systems based on plasticized starch: A review (2004) J. Macromol. Sci. Polym. Rev. C, 44, p. 231
  • Ayala-Valencia, G., Cristina De Oliveira Vercik, L., Ferrari, R., Vercik, A., Synthesis and characterization of silver nanoparticles using water-soluble starch and its antibacterial activity on Staphylococcus aureus (2013) Starch-Stärke, 65, p. 931
  • Ayala-Zavala, J., Del Toro Sánchez, L., Álvarez Parrilla, E., González Aguilar, G., High relative humidity in package of fresh cut fruits and vegetables: Advantage or disadvantage considering microbiological problems and antimicrobial delivering systems (2008) J. Food Sci, 73, p. R41
  • Azam, A., Ahmed, A.S., Oves, M., Khan, M.S., Habib, S.S., Memic, A., Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study (2011) Int. J. Nanomedicine, 7, p. 6003
  • Bogdan, J., Jackowska-Tracz, A., Zarzyńska, J., Pławińska-Czarnak, J., Chances and limitations of nanosized titanium dioxide practical application in view of its physicochemical properties (2015) Nanoscale Res. Lett, 10, p. 1
  • Bonilla, J., Talón, E., Atarés, L., Vargas, M., Chiralt, A., Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch-chitosan films (2013) J. Food Eng, 118, p. 271
  • Božanić, D.K., Djoković, V., Dimitrijević-Branković, S., Krsmanović, R., McPherson, M., Nair, P.S., Georges, M.K., Radhakrishnan, T., Inhibition of microbial growth by silver-starch nanocomposite thin films (2011) J. Biomat. Sci.-Polym. E, 22, p. 2343
  • Bumbudsanpharoke, N., Choi, J., Park, I., Ko, S., Facile biosynthesis and antioxidant property of nanogold-cellulose fiber composite (2015) J. Nanomater, 2015, p. 1
  • Buzea, C., Pacheco, I.I., Robbie, K., Nanomaterials and nanoparticles: Sources and toxicity (2007) Biointerphases, 2, p. MR17
  • Carré, G., Hamon, E., Ennahar, S., Estner, M., Lett, M.-C., Horvatovich, P., Gies, J.-P., Andre, P., TiO2 photocatalysis damages lipids and proteins in Escherichia coli (2014) Appl. Environ. Microbiol, 80, p. 2573
  • Chandramouleeswaran, S., Mhaske, S.T., Kathe, A.A., Varadarajan, P.V., Prasad, V., Vigneshwaran, N., Functional behaviour of polypropylene/ZnO-soluble starch nanocomposites (2007) Nanotechn., 18, p. 385702
  • Chandrasekaran, G., Han, H.K., Kim, G.J., Shin, H.J., Antimicrobial activity of delaminated aminopropyl functionalized magnesium phyllosilicates (2011) Appl. Clay Sci., 53, p. 729
  • Chang-Bravo, L., López-Córdoba, A., Martino, M., Biopolymeric matrices made of carrageenan and corn starch for the antioxidant extracts delivery of Cuban red propolis and yerba mate (2015) Reactive and Funtional Polymers, 85, p. 11
  • Chang, Q., Wang, Y., Cerneaux, S., Zhou, J.E., Zhang, X., Wang, X., Dong, Y., Preparation of microfiltration membrane supports using coarse alumina grains coated by nano TiO2 as raw materials (2014) J. Eur. Ceram. Soc., 34, p. 4355
  • Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxallc, A., Castle, L., Aitken, R., Watkins, R., Applications and implications of nanotechnologies for the food sector (2008) Food Addit.Contam., 25, p. 241
  • Chawengkijwanich, C., Hayata, Y., Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests (2008) Int. J. Food Microbiol., 123, p. 288
  • Chawla, K.K., (1998) Composite Materials, Science and Engineering, , New York: Springer, New York, USA
  • Chen, Y.W., Qiao, Q., Liu, Y.C., Yang, G.L., Size-Controlled Synthesis and Optical Properties of Small-Sized ZnO Nanorods (2009) J. Phys. Chem. C, 113, p. 7497
  • Cheviron, P., Gouanvé, F., Espuche, E., Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites (2014) Carbohydr. Polym., 108, p. 291
  • Chiou, B.-S., Wood, D., Yee, E., Imam, S.H., Glenn, G.M., Orts, W.J., (2007) Polym. Eng. Sci, 47, p. 1898
  • Chiou, B.-S., Yee, E., Glenn, G.M., Orts, W.J., Rheology of starch-clay nanocomposites (2005) Carbohydr. Polym, 59, p. 467
  • Chung, Y.L., Ansari, S., Estevez, L., Hayrapetyan, S., Giannelis, E.P., Lai, H.M., Preparation and properties of biodegradable starch-clay nanocomposites (2010) Carbohydr. Polym, 79, p. 391
  • Cioffi, N., Rai, M., Nano-antimicrobials (2012) Synthesis and Characterization of Novel Nano Antimicrobials, , N. Cioffi, M. Rai (Eds.), Springer, Berlin Heidelberg
  • Dallas, P., Sharma, V.K., Zboril, R., Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives (2011) Adv. Colloid Interfac., 166, p. 119
  • De Carvalho, A.J.F., Curvelo, A.A.S., Agnelli, J.A.M., A first insight on composites of thermoplastic starch and kaolin (2001) Carbohydr. Polym, 45, p. 189
  • Dhakal, H.N., Zhang, Z., Polymer matrix composites: Moisture effects and dimensional stability (2012) Wiley encyclopedia of composites, , L. Nicolais and A. Borsachiello (Eds.), Wiley, New York
  • Dizaj, S.M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M.H., Adibkia, K., Antimicrobial Activity of the Metals and Metal Oxides Nanoparticles (2014) Mater. Sci. Eng. C, 44, p. 278
  • Dastjerdi, R., Montazer, M., A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties (2010) Colloids. Surf. B, 79, p. 5
  • Dufresne, A., Medeiros, E.S., Orts, W.J., Starch-based nanocomposites. Bertolini A (Ed) (2010) Starch: Characterization, properties, and applications, p. 250. , LLC Boca Raton
  • Durand, L., Habran, N., Henschel, V., Amighi, K., Encapsulation of ethylhexyl methoxycinnamate, a light-sensitive UV filter, in lipid nanoparticles (2010) J. Microencapsul, 27, p. 714
  • Egger, S., Lehmann, R.P., Height, M.J., Loessner, M.J., Schuppler, M., Antimicrobial properties of a novel silver-silica nanocomposite material (2009) Appl. Environ. Microb., 75, p. 2973
  • Famá, L., Bittante, A.M.B.Q., Sobral, P.J.A., Goyanes, S., Gerschenson, L.N., Garlic powder and wheat bran as fillers: Their effect on the physicochemical properties of edible biocomposites (2010) Mat. Sci. Eng. C, 30, p. 853
  • Famá, L., Flores, S.K., Gerschenson, L., Goyanes, S., Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures (2006) Carbohydr. Polym., 66, p. 8
  • Famá, L., Gañan, P., Bernal, C., Goyanes, S., Biodegradable starch nanocomposites with low water vapor permeability and high storage modulus (2012) Carbohydr. Polym., 87, p. 1989
  • Famá, L., Gerschenson, L., Goyanes, S., Starch-vegetable fiber composites to protect food products (2009) Carbohydr. Polym., 75, p. 230
  • Famá, L., Gerschenson, L., Goyanes, S., Influence of storage time at room temperature in physicochemical properties of tapioca starch edible films (2007) Carbohydr. Polym., 70, p. 265
  • Famá, L., Pettarin, V., Goyanes, S., Bernal, C.R., Starch based nanocomposites with improved mechanical properties (2011) Carbohydr. Polym., 83, p. 1226
  • Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Mechanical properties of tapioca-starch edible films containing sorbates (2005) LWT-Food Sci. Technol, 38, p. 631
  • Flores, S., Famá, L., Rojas, A.N., Goyanes, S., Gerschenson, L., Physicochemical properties of tapioca-starch edible films. Influence of gelatinization and drying technique (2007) Food Res. Int., 4, p. 257
  • Fang, Z., Bhandari, B., Encapsulation of polyphenols-a review (2010) Trends Food Sci. Technol, 21, p. 510
  • Fei, P., Shi, Y., Zhou, M., Cai, J., Tang, S., Xiong, H., Effects of nano-TiO2 on the properties and structures of starch/poly (ε-caprolactone) composites (2013) J. Appl. Polym. Sci, 130, p. 4129
  • Fernández, A., Soriano, E., Hernandez-Muñoz, P., Gavara, R., Migration of antimicrobial silver from composites of polylactide with silver zeolites (2010) J. Food Sci, 75, p. E186
  • Fischer, H., Polymer nanocomposites: From fundamental research to specific applications (2003) Mat. Sci. Eng. C., 23, p. 763
  • Follain, N., Joly, C., Dole, P., Roge, B., Mathlouthi, M., Quaternary starch based blends: Influence of a fourth component addition to the starch/water/glycerol system (2006) Carbohydr. Polym, 63, p. 400
  • Fowler, B.A., Prusiewicz, C.M., Nordberg, M., Metal Toxicology in Developing Countries (2015) Handbook on the Toxicology of Metals, pp. 529-545. , 4th Ed., M. Nordberg, B.A. Fowler and M. Nordberg (Eds.), Vol. I General Considerations, Elsevier B.V., London
  • Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., Galdiero, M., Silver Nanoparticles as Potential Antibacterial Agents (2015) Molecules, 20, p. 8856
  • García, N.L., Famá, L., D’Accorso, N.B., Goyanes, S., Biodegradable Starch Nanocomposites (2015) Eco-friendly Polymer Nanocomposites, pp. 17-77. , Kumar TV and Kumari TM (Eds.), Springer India
  • García, N.L., Famá, L., Dufresne, A., Aranguren, A., Goyanes, S., A comparison between the physico-chemical properties of tuber and cereal starches (2009) Food Res. Int, 42, p. 976
  • García, N.L., Ribba, L., Dufresne, A., Aranguren, M., Goyanes, S., Physico mechanical properties of biodegradable starch nanocomposites (2009) Macromol. Mater. Eng, 294, p. 169
  • García, N.L., Ribba, L., Dufresne, A., Aranguren, M., Goyanes, S., Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals (2011) Carbohydr. Polym., 84, p. 203
  • Ghasemlou, M., Aliheidari, N., Fahmi, R., Shojaee-Aliabadi, S., Keshavarz, B., Cran, M.J., Khaksar, R., Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils (2013) Carbohydr. Polym, 98, p. 1117
  • Giannelis, E.P., Polymer layered silicate nanocomposites (1996) Adv. Mater, 8, p. 29
  • Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., Gavara, R., Advances in antioxidant active food packaging (2014) Trends Food Sci. Tech., 35, p. 42
  • González Seligra, P., Medina Jaramillo, C., Famá, L., Goyanes, S., Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as cross-linking agent (2016) Carbohydr. Polym., 138, p. 66
  • Gutiérrez, T.J., Pérez, E., Guzmán, R., Tapia, M.S., Famá, L., Physicochemical and functional properties of native and modified by cross-linking, dark-cush-cush yam (Dioscorea trifida) and cassava (Manihot esculenta) starch (2014) J. Polym. Biopol. Phys. Chem., 2 (1), p. 1
  • Gutiérrez, T.J., Tapia, M.S., Pérez, E., Famá, L., Edible films based on native and phosphated 80: 20 waxy: Normal corn starch (2014) Starch/Stärke, 66, p. 1
  • Gutiérrez, T.J., Pérez, E., Guzmán, R., Tapia, M.S., Famá, L., Structural and mechanical properties of native and modified cush-cush yam and cassava starch edible films (2015) Food Hydrocolloid., 45, p. 211
  • Haghighi, F., Roudbar Mohammadi, S., Mohammadi, P., Hosseinkhani, S., Shipour, R., Antifungal Activity of TiO2 nanoparticles and EDTA on Candida albicans Biofilms (2013) Infect. Epidemiol. Med., 1, p. 33
  • Hansen, N.M.L., Plackett, D., Sustainable films and coatings from hemicelluloses: A review (2008) Biomacromolecules, 9, p. 1494
  • Haw, M., Holographic data storage: The light fantastic (2003) Nature, 422, p. 556
  • Hejri, Z., Ahmadpour, A., Seifkordi, A.A., Zebarjad, S.M., Role of nano-sized TiO2 on mechanical and thermal behavior of starch/poly (vinyl alcohol) blend films (2012) International Congress on Nanoscience and Nanotechnology, 8, p. 215. , ICNN
  • Huang, M., Yu, J., Structure and properties of thermoplastic corn starch/montmorillonite biodegradable composites (2006) J. Appl. Polym. Sci, 99, p. 170
  • Hwang, I.S., Hwang, J.H., Choi, H., Kim, K.J., Lee, D.G., Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved (2012) J. Med. Microbiol., 61, p. 1719
  • Hwang, S.W., Shim, J.K., Selke, S., Soto-Valdez, H., Matuana, L., Rubino, M., Auras, R., Migration of α-tocopherol and resveratrol from poly(L-lactic acid)/starch blends films into ethanol (2013) J. Food Engineer, 116, p. 814
  • Iavicoli, I., Fontana, L., Leso, V., Bergamaschi, A., The Effects of Nanomaterials as Endocrine Disruptors (2013) Int. J. Mol. Sci, 14, p. 16732
  • Ibrahim, H.M.M., Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms (2015) J. Radiation Res. Appl. Scie., 8, p. 265
  • Incoronato, A.L., Buonocore, G.G., Conte, A., Lavorgna, M., Del Nobile, M.A., Active systems based on silver-montmorillonite nanoparticles embedded into bio-based polymer matrices for packaging applications (2010) J. Food Protect., 73, p. 2256
  • Jaberzadeh, A., Moaveni, P., Tohidi Moghadam, H.R., Zahedi, H., Influence of Bulk and Nanoparticles Titanium Foliar Application on some Agronomic Traits, Seed Gluten and Starch Contents of Wheat Subjected to Water Deficit Stress (2013) Not Bot Horti Agrobo, 41, p. 201
  • Jiménez, A., Fabra, M.J., Talens, P., Chiralt, A., Phase transitions in starch based films containing fatty acids. Effect on water sorption and mechanical behavior (2013) Food Hydrocolloid., 30, p. 408
  • Jiménez, A., Fabra, M.J., Talens, P., Chiralt, A., Physical properties and antioxidant capacity of starch-sodium caseinate films containing lipids (2013) J. Food Engineer., 116, p. 695
  • Kahrilas, G.A., Haggren, W., Read, R.L., Wally, L.M., Fredrick, S.J., Hiskey, M., Prieto, A.L., Owens, J.E., Investigation of antibacterial activity by silver nanoparticles prepared by microwave-assisted green syntheses with soluble starch, dextrose, and arabinose (2014) ACS Sustainable Chem. Eng, 2, p. 590
  • Kanmani, P., Rhim, J.W., Nano and nanocomposite antimicrobial materials for food packaging applications (2014) Prog. Nanomat. Food Packag., p. 34
  • Kechichian, V., Ditchfield, C., Veiga-Santos, P., Tadini, C.C., Natural antimicrobial ingredients incorporated in biodegradable films based on cassava starch (2010) LWT-Food Sci. Technol, 43, p. 1088
  • Khachatryan, K., Khachatryan, G., Fiedorowicz, M., Para, A., Tomasik, P., Formation of nanometal particles in the dialdehyde starch matrix (2013) Carbohydr. Polym, 98, p. 568
  • Khalil, H.A., Bhat, A.H., Bakar, A.A., Tahir, P.M., Zaidul, I.S.M., Jawaid, M., Cellulosic Nanocomposites from Natural Fibers for Medical Applications: A Review (2015) Handbook of Polymer Nanocomposites. Processing, Performance and Application, pp. 475-511. , J.K. Pandey, H. Takagi and Nakagaito (Eds.), Springer, Berlin Heidelberg
  • Khan, Z., Singh, T., Hussain, J.I., Obaid, A.Y., Al-Thabaiti, S.A., El-Mossalamy, E.H., Starchdirected green synthesis, characterization and morphology of silver nanoparticles (2013) Colloid. Surfaces B, 102, p. 578
  • Klemm, D., Heublein, B., Fink, H.-P., Boh, A., Cellulose: Fascinating biopolymer and sustainable raw material (2005) Angew. Chem. Int. Ed, 44, p. 3358
  • Kumar, R., Münstedt, H., Silver ion release from antimicrobial polyamide/silver composites (2005) Biomater., 26, p. 2081
  • Lan, Y., Lu, Y., Ren, Z., Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications (2013) Nano Energy, 2, p. 1031
  • Latif, U., Al-Rubeaan, K., Saeb, A.T., A review on antimicrobial chitosan-silver nanocomposites: A roadmap toward pathogen targeted synthesis (2015) Int. J. Polymer. Mat. and Polymer. Biomater., 64, p. 448
  • Li, J.H., Hong, R.H., Li, M.Y., Li, H.Z., Zheng, Y., Ding, J., Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings (2009) Prog. Org. Coat., 64, p. 504
  • Li, Y.F., Gan, W.P., Jian, Z.H.O.U., Lu, Z.Q., Chao, Y.A.N.G., Ge, T.T., Hydrothermal synthesis of silver nanoparticles in Arabic gum aqueous solutions (2015) T. Nonferr. Metal. Soc., 25, p. 2081
  • Lin, W., Xu, Y., Huang, C., Ma, Y., Shannon, K., Chen, D., Huang, Y., Toxicity of nano-and micro-sized ZnO particles in human lung epithelial cells (2009) J Nanopart. Res, 11, p. 25
  • Lin, B., Luo, Y., Teng, Z., Zhang, B., Zhou, B., Wang, Q., Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage (2015) LWT-Food Sci. Technol, 63, p. 1206
  • Liu, C.J., Burghaus, U., Besenbacher, F., Wang, Z.L., Preparation and characterization of nanomaterials for sustainable energy production (2010) ACS nano., 4, p. 5517
  • Liu, Y., Liu, X., Wang, X., Biomimetic synthesis of gelatin polypeptide-assisted noble-metal nanoparticles and their interaction study (2011) Nanoscale Res. Lett, 6, p. 22
  • Liu, Q., Zhang, M., Fang, Z., Rong, X., Effects of ZnO nanoparticles and microwave heating on the sterilization and product quality of vacuum packaged Caixin (2014) J. Sci. Food Agric., 94, p. 2547
  • Liu, C., Xiong, H., Chen, X., Lin, S., Tu, Y., Effects of nano-tio2 on the performance of highamylose starch based antibacterial films (2015) J. Appl. Polym. Sci, 132, p. 42339
  • Llorens, A., Lloret, E., Picouet, P.A., Trbojevich, R., Fernandez, A., Metallic-based micro and nanocomposites in food contact materials and active food packaging (2012) Trends Food Sci. Technol, 24, p. 19
  • López-Córdoba, A., Deladino, L., Martino, M., Effect of starch filler on calcium-alginate hydrogels loaded with yerba mate antioxidants (2013) Carbohydr. Polym., 95, p. 315
  • Lu, Y., Weng, L., Cao, X., Biocomposites of plasticized starch reinforcerd with cellulose crystallites from cottonseed (2005) Macromol.Biosci, 5, p. 1101
  • Lu, Y., Weng, L., Cao, X., Morphology, thermal and mechanical properties of ramie crystallitesreinforced plasticized starch biocomposites (2006) Carbohydr. Polym, 63, p. 198
  • Ma, X., Chang, P.R., Jang, J., Yu, J., Preparation and properties of glycerol plasticized-pea starch/zinc oxide-starch bionanocomposites (2009) Carbohydr. Polym., 75, p. 472
  • Magalhães, N.F., Andrade, C.T., Thermoplastic corn starch/clay hybrids: Effect of clay type and content on physical properties (2009) Carbohydr. Polym, 75, p. 712
  • Majdzadeh-Ardakani, K., Navarchian, A.H., Sadeghi, F., Optimization of mechanical properties of thermoplastic starch/clay nanocomposites (2010) Carbohydr. Polym, 79, p. 547
  • Maneerat, C., Hayata, Y., Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests (2006) Int. J. Food Microbiol., 107, p. 99
  • Manno, D., Filippo, E., Di Giulio, M., Serra, A., Synthesis and characterization of starch-stabilized Ag nanostructures for sensors applications (2008) J. Non-Cryst. Solids, 354, p. 5515
  • Medeiros, E.S., Tocchetto, R.S., Carvalho, L.H., Conceicao, M.M., Souza, A.G., Nucleating effect and dynamic crystallization of a polypropylene/attapulgite (2002) J. Therm. Anal. Calorim, 67, p. 279
  • Medeiros, E.S., Tocchetto, R.S., Carvalho, L.H., Santos, I.M.G., Souza, A.G., Nucleating effect and dynamic crystallization of a polypropylene/talc system (2001) J. Therm. Anal. Calorim, 66, p. 523
  • Medina Jaramillo, C., González Seligra, P., Goyanes, S., Bernal, C., Famá, L., Biofilms based on cassava starch containing extract of yerba mate as antioxidant and plasticizer (2015) Starch-Stärke, 67, p. 780
  • Melhem, H., Simon, P., Wang, J., Di Bin, C., Ratier, B., Leconte, Y., Herlin-Boime, N., Bouclé, J., Direct photocurrent generation from nitrogen doped TiO2 electrodes in solid-state dye-sensitized solar cells: Towards optically-active metal oxides for photovoltaic applications (2013) Sol. Energ. Mat. Sol. C., 117, p. 624
  • Meshitsuka, G., Isogai, A., Chemical Structures of Cellulose, Hemicelluloses and Lignin (1996) Chemical Modification of Lignocellulosic Materials, , D.-N.S. Hon (Ed.), Marcel Dekker Inc, New York, NY
  • Metak, A.M., Effects of nanocomposite based nano-silver and nano-titanium dioxideon food packaging materials (2015) Int. J. Appl. Sci. Technol., 5, p. 26
  • Mohanty, S., Mishra, S., Jena, P., Jacob, B., Sarkar, B., Sonawane, A., An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles (2012) Nanomedicine, 8, p. 916
  • Morales, N.J., Candal, R., Famá, L., Goyanes, S., Rubiolo, G.H., Improving the physical properties of starch using a new kind of water dispersible nano-hybrid reinforcement (2015) Carbonydr. Polym, 127, p. 291
  • Müller, C., Laurindo, J., Yamashita, F., Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films (2011) Ind. Crop. Prod, 33, p. 605
  • Nafchi, A.M., Alias, A.K., Mahmud, S., Robal, M., Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide (2012) J. Food. Eng., 113, p. 511
  • Nuryetti, H.H., Nasikin, M., Structure, energy band gap and electrical conductivity of tapioca/metal oxide composite (2012) J. Chem. Chem. Eng., 6, p. 911
  • Nyström, L., Achrenius, T., Lampi, A., Moreau, R., Piironen, V., A comparison of the antioxidant properties of steryl ferulates with tocopherol at high temperatures (2007) Food Chem, 101, p. 947
  • Ohashi, F., Oya, A., Duclaux, L., Beguin, F., Structural model calculation of antimicrobial and antifungal agents derived from clay minerals (1998) Appl. Clay Sci., 12, p. 435
  • Orts, W.J., Shey, J., Imam, S.H., Glenn, G.M., Guttman, M.E., Revol, J.-F., Application of cellulose microfibrils in polymer nanocomposites (2005) J. Polym. Environ, 13, p. 301
  • Othman, S.H., Abd Salam, N.R., Zainal, N., Kadir Basha, R., Talib, R.A., Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications (2014) Int. J. Photoenergy, 2014, p. 1
  • Paisoonsin, S., Pornsunthorntawee, O., Rujiravanit, R., Preparation and characterization of ZnO-deposited DBD plasma-treated PP packaging film with antibacterial activities (2013) Appl. Surf. Sci., 273, p. 824
  • Pal, S., Tak, Y.K., Song, J.M., Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli (2007) Appl. Environ. Microbiol., 73, p. 1712
  • Panáček, A., Kvitek, L., Prucek, R., Kolar, M., Večeřová, R., Pizúrová, N., Sharma, V.K., Zboril, R., Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity (2006) J. Phys. Chem. B, 110, p. 16248
  • Pandey, J.K., Kumar, A.P., Misra, M., Mohanty, A.K., Drzal, L.T., Palsingh, R., Recent advances in biodegradable nanocomposites (2005) J. Nanosci. Nanotechnol, 5, p. 497
  • Park, H.M., Lee, W.K., Park, C.Y., Cho, W.J., Ha, C.S., Environmentally friendly polymer hybrids Part I. Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites (2003) J. Mat. Sci., 38, p. 909
  • Partanen, R., Ahro, M., Hakala, M., Kallio, H., Forssell, P., Microencapsulation of caraway extract in ß-cyclodextrin and modified starches (2002) Eur. Food Res. Technol, 214, p. 242
  • Patakfalvi, R., Dékány, I., Synthesis and intercalation of silver nanoparticles in kaolinite/DMSO complexes (2004) Appl. Clay Sci., 25, p. 149
  • Patel, A.K., Chitosan: Emergence as potent candidate for green adhesive market (2015) Biochem. Eng. J., , http://dx.doi.org/10.1016/j.bej.2015.01.005
  • Pappu, A., Patil, V., Jain, S., Mahindrakar, A., Haque, R., Thakur, V.K., Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review (2015) Int. J. Biol. Macromol., 79, p. 449
  • Patil, A.J., Muthusamy, E., Mann, S., Fabrication of functional protein-organoclay lamellar nanocomposites by biomolecule-induced assembly of exfoliated aminopropyl-functionalized magnesium phyllosilicates (2005) J. Mater. Chem., 15, p. 3838
  • Patil, M.A., Parikh, P.A., Investigation on likely effects of Ag, TiO2, and ZnO nanoparticles on sewage treatment (2014) B. Environ. Contam. Tox., 92, p. 109
  • Perez-Gago, M.B., Krochta, J.M., Drying Temperature Effect on Water Vapor Permeability and Mechanical Properties of Whey Protein-Lipid Emulsion Films (2000) J. Agric. Food Chem, 48, p. 2687
  • Peters, R., Brandhoff, P., Weigel, S., Marvin, H., Bouwmeester, H., Aschberger, K., Mech, A., (2014) Inventory of Nanotechnology applications in the agricultural, feed and food sector, p. 1. , External Scientific Report, CFT/EFSA/FEED/2012/01. EFSA supporting publication EN-621
  • Quirós-Sauceda, A.E., Ayala-Zavala, J.F., Olivas, G.I., González-Aguilar, G.A., Edible coatings as encapsulating matrices for bioactive compounds: A review (2014) J. Food Sci. Tech. Mys, 51, p. 1674
  • Rahman, M.A., Mahmud, S., Alias, S.K., Mohd Nor, A., Effect of Nanorod Zinc Oxide on Electrical and Optical Properties of Starch-based Polymer Nanocomposites (2013) J. Phys. Sci, 24, p. 17
  • Raji, V., Chakraborty, M., Parikh, P.A., Synthesis of starch-stabilized silver nanoparticles and their antimicrobial activity (2012) Particul. Sci. Technol., 30, p. 565
  • Rasmussen, J.W., Martinez, E., Louka, P., Wingett, D.G., Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications (2010) Expert Opin. Drug Deliv., 7, p. 1063
  • Ravishankar Rai, V., Jamuna Bai, A., Nanoparticles and their potential application as antimicrobials (2011) Science Against Microbial Pathogens: Communicating Current Research and Technological Advances, , A. Méndez-Vilas (Ed.), Formatex Research Center, USA
  • Ray, S.S., Okamoto, M., Polymer/layered silicate nanocomposites: A review from preparation to processing (2003) Prog.Polym. Sci, 28, p. 15391
  • Reis, L.C.B., Oliveira De Souza, C., Alves Da Silva, J.B., Martins, A.C., Nunes, I.L., Druzian, J.I., Active biocomposites of cassava starch: The effect of yerba mate extract and mango pulp as antioxidant additives on the properties and the stability of a packaged product (2015) Food Bioprod. Process, 94, p. 382
  • Rhim, J.W., Hong, S.I., Park, H.M., Perry, K.W., Preparation and characterization of chitosanbased nanocomposite films with antimicrobial activity (2006) J. Agr. Food Chem, 54, p. 5814
  • Rhim, J.W., Wang, L.F., Hong, S.I., Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity (2013) Food Hydrocolloid., 33, p. 327
  • Rodney, J., Sahari, J., Kamal, M., Shah, M., Sapuan, S.M., Thermochemical and mechanical properties of tea tree (Melaleuca alternifolia) fibre reinforced tapioca starch composites (2015) e-Polymers, 15, p. 401
  • Sadegh-Hassani, F., Nafchi, A.M., Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay (2014) Int. J. Biol. Macromol, 67, p. 446
  • Salehi-Khojin, A., Jhong, H.R.M., Rosen, B.A., Zhu, W., Ma, S., Kenis, P.J., Masel, R.I., Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis (2013) J. Phys. Chem. C, 117, p. 1627
  • Salunke, G.R., Ghosh, S., Kumar, R.S., Khade, S., Vashisth, P., Kale, T., Chopade, S., Chopade, B.A., Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control (2014) Int. J. Nanomed., 9, p. 2635
  • Saraf, R., Cost effective and Monodispersed Zinc Oxide Nanoparticles Synthesis and their Characterization (2013) Int. J. Adv. Appl. Sci, 2, p. 85
  • Sarkanen, K.V., Ludwig, C.H., (1971) Lignins-occurence, formation, structure and reactions, p. 1. , Wiley Interscience, New York
  • Shahabi-Ghahfarrokhi, I., Khodaiyan, F., Mousavi, M., Preparation of UV-protective kefiran/nano-ZnO nanocomposites: Physical and mechanical properties (2015) Int. J. Biol. Macromol., 72, p. 41
  • Shahabi-Ghahafarrokhi, I., Khodaiyan, F., Mousavi, M., Yousefi, H., Preparation and characterization of nanocellulose from beer industrial residues using acid hydrolysis/ultrasound (2015) Fiber.Polym, 16, p. 529
  • Shahid, M., McDonagh, A., Kim, J.H., Shon, H.K., Magnetised titanium dioxide (TiO2) for water purification: Preparation, characterisation and application (2015) Desalin. Water Treat, 54, p. 979
  • Shalaby, W.S., Latour, R.A., (1997) Handbook of Composites, , S.T. Peters (Ed.), Springer, Berlin
  • Shankar, S., Teng, X., Li, G., Rhim, J., Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films (2015) Food Hydrocolloid, 45, p. 264
  • Sharma, V.K., Yngard, R.A., Lin, Y., Silver nanoparticles: Green synthesis and their antimicrobial activities (2009) Adv. Colloid Interfac., 145, p. 83
  • Shen, Z., Simon, G.P., Cheng, Y.B., Comparison of solution intercalation and melt intercalation of polymer-clay nanocomposites (2002) Polymers, 43, p. 4251
  • Silva-Weiss, A., Ihl, M., Sobral, P.J.A., Gómez-Guillén, M.C., Bifani, V., Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods (2013) Food Eng. Rev., 5, p. 200
  • Singha, A.S., Thakur, V.K., Grewia optiva Fiber Reinforced Novel, Low Cost Polymer Composites (2009) J. Chem., 6, p. 71
  • Singha, A.S., Thakur, V.K., Physical, chemical and mechanical properties of Hibiscus sabdariffa fiber/polymer composite (2009) Int. J. Polym. Mater., 58, p. 217
  • Singha, A.S., Thakur, V.K., Mechanical, thermal and morphological properties of grewia optiva fiber/polymer matrix composites (2009) Polym.-Plast. Technol. Eng., 48, p. 201
  • Singha, A.S., Thakur, V.K., Fabrication and Characterization of H. sabdariffa Fiber-Reinforced Green Polymer Composites (2009) Polym.-Plast. Technol. Eng., 48, p. 482
  • Singh, R.P., Pandey, J.K., Rutot, D., Degée, P., Dubois, P., Biodegradation of poly (ε-caprolactone)/starch blends and composites in composting and culture environments: The effect of compatibilization on the inherent biodegradability of the host polymer (2003) Carbohydr. Res., 338, p. 1759
  • Song, X., Li, R., Li, H., Hu, Z., Mustapha, A., Lin, M., Characterization and quantification of zinc oxide and titanium dioxide nanoparticles in foods (2014) Food Bioprocess Tech., 7, p. 456
  • Sonkaew, P., Sane, A., Suppakul, P., Antioxidant activities of curcumin and ascorbyl dipalmitate nanoparticles and their activities after incorporation into cellulose-based packaging films (2012) J. Agr. Food Chem, 60, p. 5388
  • Sorrentino, A., Gorrasi, G., Vittoria, V., Potential perspectives of bionanocomposites for food packaging applications (2007) Trends Food Sci. Technol, 18, p. 84
  • Spence, K., Habibi, Y., Dufresne, A., Nanocellulose-based composites (2011) Cellulose fibers: Bio-and nano-polymer composites, pp. 179-213. , K. Susheel, B.S. Kaith and I. Kaur (Eds.), Springer, Berlin Heidelberg
  • Sreekumar, P.A., Al-Harthi, M.A., De, S.K., Reinforcement of starch/polyvinyl alcohol blend using nano-titanium dioxide (2012) J. Compos. Mater., 46, p. 3181
  • Taheri, S., Baier, G., Majewski, P., Barton, M., Förch, R., Landfester, K., Vasilev, K., Synthesis and antibacterial properties of a hybrid of silver-potato starch nanocapsules by miniemulsion/polyaddition polymerization (2014) J. Mater. Chem. B, 2, p. 1838
  • Talja, R.A., Helén, H., Roos, Y.H., Jouppila, K., Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films (2007) Carbohydr. Polym, 67, p. 288
  • Tayel, A.A., El-Tras, W.F., Moussa, S., El-Baz, A.F., Mahrous, H., Salem, M.F., Brimer, L., Antibacterial action of zinc oxide nanoparticles against food borne pathogens (2011) J. Food Safety, 31, p. 211
  • Thakur, V.K., (2013) Green composites from natural resources, p. 419. , CRC Press Taylor & Francis, 2013, 9781466570696
  • Thakur, V.K., Singha, A.S., (2013) Biomass-based Biocomposites, p. 386. , Smithers Rapra, 978147359803
  • Thakur, V.K., Singha, A.S., Mehta, I.K., Renewable resource-based green polymer composites: Analysis and characterization (2010) Int. J. Polym. Anal.Charact, 15, p. 137
  • Thakur, V.K., Thakur, M.K., Gupta, R.K., Graft Copolymers from Natural Polymers Using Free Radical Polymerization (2013) Int. J. Polym. Anal.Charact, 18, p. 495
  • Thakur, V.K., Thakur, M.K., Gupta, R.K., Synthesis of lignocellulosic polymer with improved chemical resistance through free radical polymerization (2013) Int. J. Polym. Anal.Charact, 61, p. 121
  • Thakur, V.K., Thakur, M.K., Gupta, R.K., Rapid synthesis of graft copolymers from natural cellulose fibers (2013) Carbohydr. Polym., 98, p. 820
  • Thakur, M.K., Gupta, R.K., Thakur, V.K., Surface modification of cellulose using silane coupling agent (2014) Carbohydr. Polym., 111, p. 849
  • Thakur, V.K., Thakur, M.K., Gupta, R.K., Graft copolymers of natural fibers for green composites (2014) Carbohydr. Polym., 104, p. 87
  • Thakur, V.K., Thakur, M.K., Processing and characterization of natural cellulose fibers/thermoset polymer composites (2014) Carbohydr. Polym, 109, p. 102
  • Thakur, V.K., Thakur, M.K., Recent Advances in Graft Copolymerization and Applications of Chitosan: A Review (2014) ACS Sustain. Chem. Eng., 2, p. 2637
  • Thakur, V.K., Thakur, M.K., Recent trends in hydrogels based on psyllium polysaccharide: A review (2014) J. Clean. Prod., 82, p. 1
  • Thakur, V.K., Kessler, M.R., Free radical induced graft copolymerization of ethyl acrylate onto SOY for multifunctional materials (2014) Mater. Today Commun., 1, pp. 34-41
  • Thakur, V.K., Kessler, M.R., Synthesis and characterization of AN-g-SOY for sustainable polymer composites (2014) ACS Sustain. Chem. Eng., 2, pp. 2454-2460
  • Thakur, M.K., Thakur, V.K., Gupta, R.K., Pappu, A., Synthesis and Applications of Biodegradable Soy Based Graft Copolymers: A Review (2016) ACS Sustain. Chem. Eng., 4, pp. 1-17
  • Tharanathan, R.N., Biodegradable films and composite coatings: Past, present and future (2003) Trends Food Sci. Technol, 14, p. 71
  • (2015) The silver institute, , https://www.silverinstitute.org/site/supply-demand/silver-production/
  • (2014) TZ Minerals International PTY Ltd, , http://www.tzmi.com/sites/default/files/pdf/Press%20Release%20-%20TiO2%20Pigment%20Annual%20Review%202014.pdf, ABN 99 003 492 519, Press Release
  • (2013) The Essential Chemical Industry, , http://www.essentialchemicalindustry.org/chemicals/titanium-dioxide.html, Titanium Dioxide
  • Uraki, Y., Sugiyama, Y., Koda, K., Kubo, S., Kishimoto, T., Kadla, J.F., Thermal mobility of β-O--4-type artificial lignin (2012) Biomacromolecules, 13, p. 867
  • Valodkar, M., Sharma, P., Kanchan, D.K., Thakore, S., Conducting and antimicrobial properties of silver nanowire-waxy starch nanocomposites (2010) Int. J. Green Nanotech. Phys. Chem., 2, p. 10
  • Valodkar, M., Bhadoria, A., Pohnerkar, J., Mohan, M., Thakore, S., Morphology and antibacterial activity of carbohydrate-stabilized silver nanoparticles (2010) Carbohydr. Res., 345, p. 1767
  • Viskupicova, J., Danihelova, M., Ondrejovic, M., Liptaj, T., Sturdik, E., Lipophilic rutin derivatives for antioxidant protection of oil-based foods (2010) Food Chem, 123, p. 45
  • Vodnik, V.V., Božanić, D.K., Bibić, N., Šaponjić, Z.V., Nedeljković, J.M., Optical properties of shaped silver nanoparticles (2008) J. Nanosci. Nanotechnol., 8, p. 3511
  • Voicu, S.I., Condruz, R.M., Mitran, V., Cimpean, A., Miculescu, F., Andronescu, C., Miculescu, M., Thakur, V.K., Sericin Covalent Immobilization onto Cellulose Acetate Membrane for Biomedical Applications (2016) ACS Sustain. Chem. Eng., 4, p. 1765
  • Wan, C., Qiao, X., Zhang, Y., Zhang, Y., Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites (2003) Polym. Test, 22, p. 453
  • Wang, C.R., Yan, X.Z., Yu, L.L., Fang, R., Preparation and properties of glycerol plasticized-corn starch/titanium dioxide-starch bionanocomposites (2014) Adv. Mat. Res., 997, p. 480
  • Wang, J., Dong, Z., Huang, J., Li, J., Liu, K., Jin, J., Ma, J., Synthesis of Ag nanoparticles decorated multiwalled carbon nanotubes using dialdehyde starch as complexant and reductant for antibacterial purposes (2013) RSC Advances, 3, p. 918
  • Wang, L.S., Wang, C.Y., Yang, C.H., Hsieh, C.L., Chen, S.Y., Shen, C.Y., Wang, J.J., Huang, K.S., Synthesis and anti-fungal effect of silver nanoparticles-chitosan composite particles (2015) Int. J. Nanomed., 10, p. 2685
  • Wang, X., Zhang, X., Liu, H., Wang, N., Impact of pre-processing of montmorillonite on the properties of melt-extruded thermoplastic starch/montmorillonite nanocomposites (2009) Starch-Stärke, 61, p. 489
  • Wei, X., Liu, J., Liu, X.W., Ultrafine dice-like anatase TiO2 for highly efficient dye-sensitized solar cells (2015) Sol. Energ. Mat. Sol. C, 134, p. 133
  • Whilton, N.T., Burkett, S.L., Mann, S., Hybrid lamellar nanocomposites based on organically functionalized magnesium phyllosilicate clays with interlayer reactivity (1998) J. Mater. Chem., 8, p. 1927
  • Wist, J., Sanabria, J., Dierolf, C., Torres, W., Pulgarin, C., Evaluation of photocatalytic disinfection of crude water for drinking-water production (2002) J. Photoch. Photobio. A, 147, p. 241
  • Wu, H., Thakur, V.K., Kessler, M.R., Novel low-cost hybrid composites from asphaltene/SBS triblock copolymer with improved thermal and mechanical properties (2016) J. Mater. Sci., 51, p. 2394
  • Xie, A.G., Cai, X., Lin, M.S., Wu, T., Zhang, X.J., Lin, Z.D., Tan, S., Long-acting antibacterial activity of quaternary phosphonium salts functionalized few-layered graphite (2011) Mater. Sci. Eng. B, 176, p. 1222
  • Yakout, S.M., Mostafa, A.A., A novel green synthesis of silver nanoparticles using soluble starch and its antibacterial activity (2015) Int. J. Clin. Exp. Med., 8, p. 3538
  • Yang, H., Zhu, S., Pan, N., Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme (2004) J. Appl. Polym. Sci, 92, p. 3201
  • Yoksan, R., Chirachanchai, S., Silver nanoparticle-loaded chitosan-starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties (2010) Mater. Sci. Eng. C, 30, p. 891
  • Yu, J., Yang, J., Liu, B., Ma, X., Preparation and characterization of glycerol plasticized-pea starch/ZnO-carboxymethylcellulose sodium nanocomposites (2009) Bioresour. Technol, 100, p. 2832
  • Yun, Y.H., Youn, Y.N., Yoon, S.D., Lee, J.U., Preparation and physical properties of starch-based nanocomposite films with the addition of titanium oxide nanoparticles (2012) J. Ceram. Process. Res., 13, p. 59
  • Yun, H., Kim, J.D., Choi, H.C., Lee, C.W., Antibacterial Activity of CNT-Ag and GO-Ag Nanocomposites Against Gram-negative and Gram-positive Bacteria (2013) Bull. Korean Chem. Soc., 34, p. 3261
  • Zhao, R., Torley, P., Halley, P.J., Emerging biodegradable materials: Starch-and protein-based bio-nanocomposites (2008) J. Mat. Sci., 43, p. 3058
  • Zheng, P., Du, Y., Chang, P.R., Ma, X., Amylose-halloysite-TiO2 composites: Preparation, characterization and photodegradation (2015) Appl. Surf. Sci., 329, p. 256
  • Zhou, J.J., Wang, S.Y., Gunasekaran, S., Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles (2009) J. Food Sci, 74, p. N50

Citas:

---------- APA ----------
Gutiérrez, T.J., Seligra, P.G., Jaramillo, C.M., Famá, L. & Goyanes, S. (2017) . Effect of filler properties on the antioxidant response of thermoplastic starch composites. Handbook of Composites from Renewable Materials, 1-8, 337-369.
http://dx.doi.org/10.1002/9781119441632.ch14
---------- CHICAGO ----------
Gutiérrez, T.J., Seligra, P.G., Jaramillo, C.M., Famá, L., Goyanes, S. "Effect of filler properties on the antioxidant response of thermoplastic starch composites" . Handbook of Composites from Renewable Materials 1-8 (2017) : 337-369.
http://dx.doi.org/10.1002/9781119441632.ch14
---------- MLA ----------
Gutiérrez, T.J., Seligra, P.G., Jaramillo, C.M., Famá, L., Goyanes, S. "Effect of filler properties on the antioxidant response of thermoplastic starch composites" . Handbook of Composites from Renewable Materials, vol. 1-8, 2017, pp. 337-369.
http://dx.doi.org/10.1002/9781119441632.ch14
---------- VANCOUVER ----------
Gutiérrez, T.J., Seligra, P.G., Jaramillo, C.M., Famá, L., Goyanes, S. Effect of filler properties on the antioxidant response of thermoplastic starch composites. Handb. of Composites from Renew. Mater. 2017;1-8:337-369.
http://dx.doi.org/10.1002/9781119441632.ch14