Parte de libro

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

Growing concern about water contamination along with the necessity of ensuring water quality and sustainable management of limited water resources have led to the search of more efficient and selective materials for use in sorption-based technologies. They are widely applied for the capture of a variety of different pollutant species in wastewater treatment, due to robustness, easy operation, and relatively low cost. Inspired by the unique nanostructure of graphene and its exceptional properties, efforts have been directed toward the development of a new generation of sorbents based on this latest carbon allotrope, related nanostructures, and/or derived nanostructured composites for the removal of water contaminants. Main advances attained in this field in the last few years are reviewed in the present chapter. The first part is devoted to recent efforts targeted at the development of highly efficient graphene-based nanosorbents for the capture of polluting inorganic and water-soluble organic species, mainly including heavy metals, nonmetal anions, dyes, and pharmaceuticals, whereas the second one provides latest progresses toward using graphene and related materials as advanced sorbents for cleanup of oil spills and removal of some other water-insoluble organic contaminants. © 2018 Scrivener Publishing LLC. All rights reserved.

Registro:

Documento: Parte de libro
Título:Capture of water contaminants by a new generation of sorbents based on graphene and related materials
Autor:Cukierman, A.L.; Bonelli, P.R.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto de Industrias, Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Depto de Tecnología Farmacéutica, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Palabras clave:Carbon nanomaterials; Dyes; Graphene; Graphene oxide; Heavy metals; Oil spills; Sorption
Año:2018
Página de inicio:227
Página de fin:276
DOI: http://dx.doi.org/10.1002/9781119323655.ch8
Título revista:Nanotechnology for Sustainable Water Resources
Título revista abreviado:Nanotechnol. for Sustain. Water Resour.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97811193_v_n_p227_Cukierman

Referencias:

  • Nunell, G.V., Fernandez, M.E., Bonelli, P.R., Cukierman, A.L., Nukierman, A.L., Nitrate uptake from water by means of tailored adsorbents (2015) Water Air Soil Pollut, 226 (8), pp. 278-291
  • Nunell, G.V., Bonelli, P.R., Cukierman, A.L., Management strategy of an invasive woody plant species through conversion into adsorbents for remediation of polluted water (2016) Invasive Species: Ecology, Management strategies and conservation, pp. 55-80. , Sutton, J. (Ed.). Nova Science Publishers Inc., N.Y., USA
  • Sun, X.F., Guo, B.B., He, L., Xia, P.F., Wang, S.G., Electrically accelerated removal of organic pollutants by a three-dimensional graphene aerogel (2016) AIChE J, 62, pp. 2154-2162
  • Ma, Q., Yu, Y., Sindoro, M., Fane, A.G., Wang, R., Zhang, H., Carbon-based functional materials derived from waste for water remediation and energy storage (2017) Adv. Mater, p. 1605361
  • Nayak, A., Bhushan, B., Gupta, V., Sharma, P., Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: Effect of activation conditions (2017) J. Colloid Interf. Sci, 493, pp. 228-240
  • Cukierman, A.L., Development and environmental applications of activated carbon cloths (2013) ISRN Chem. Eng, p. 31. , Article ID 261523, 2013
  • Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S.K., Grace, A.N., Bhatnagar, A., Role of nanomaterials in water treatment applications: A review (2016) Chem. Eng. J, 306, pp. 1116-1137
  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Firsov, A.A., Electric field effect in atomically thin carbon films (2004) Science, 306, pp. 666-669
  • Geim, A.K., Graphene: status and prospects (2009) Science, 324, pp. 1530-1534
  • Cukierman, A.L., Platero, E., Fernández, M.E., Bonelli, P.R., Potentialities of graphene-based nanomaterials for wastewater treatment (2016) Smart Materials for Waste Water Application, pp. 47-86. , Mishra, K.A. (Ed.). Wiley-Scrivener Publishers, USA
  • Ferrari, A.C., Bonaccorso, F., Fal'ko, V., Novoselov, K.S., Roche, S., Bøggild, P., Science and technology roadmap for graphene, related two- dimensional crystals, and hybrid systems (2015) Nanoscale, 7, pp. 4598-4810
  • Bento, J.L., Brown, E., Woltornist, S.J., Adamson, D.H., Tdamson, D.H., Thermal and electrical properties of nanocomposites based on self-assembled pristine graphene (2017) Adv. Funct. Mater, 27, p. 1604277
  • Niu, Z., Liu, L., Zhang, L., Chen, X., Porous graphene materials for water remediation (2014) Small, 10, pp. 3434-3441
  • Song, X., Lin, L., Rong, M., Wang, Y., Xie, Z., Chen, X., Mussel-inspired, ultralight, multifunctional 3D nitrogen-doped graphene aerogel (2014) Carbon, 80, pp. 174-182
  • Luo, X., Wang, X., Bao, S., Liu, X., Zhang, W., Fang, T., Adsorption of phosphate in water using one-step synthesized zirconium-loaded reduced graphene oxide (2016) Sci. Rep, 6, p. 39108
  • Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., Sing, K., (2014) Adsorption by Powders and Porous Solids Principles, Methodology and Applications, , (Second Edition), Elsevier Ltd. Amsterdam
  • Marsh, H., Rodríguez Reinoso, F., (2006) Activated Carbon, , Elsevier
  • Fang, S., Chen, T., Chen, B., Xiong, Y., Zhu, Y., Duan, M., Graphene oxide at oil-water interfaces: Adsorption, assembly & demulsification (2016) Colloid Surface A, 511, pp. 47-54
  • Ge, H., Wang, C., Liu, S., Huang, Z., Synthesis of citric acid functionalized magnetic graphene oxide coated corn straw for methylene blue adsorption (2016) Bioresource Technol, 221, pp. 419-429
  • Pandele, A.M., Ioniţă, M., Iovu, H., Molecular modeling of mechanical properties of the chitosan based graphene composites (2014) U.P.B. Sci. Bull Series B, 76 (1), pp. 107-112
  • Jang, J., Hong, J., Chab, C., Effects of precursor composition and mode of crosslinking on mechanical properties of graphene oxide reinforced composite hydrogels (2017) J. Mech. Behav. Biomed, 69, pp. 282-293
  • Leslie-Pelecky, D., Rieke, R., Magnetic properties of nanostructured materials (1996) Chem. Mater, 8, pp. 1770-1783
  • Cooney, D., (1999) Adsorption Design for Wastewater Treatment, , CRS Press LLC, USA
  • Nabarlatz, D., de Celis, J., Bonelli, P., Cukierman, A.L., Batch and dynamic sorption of Ni(II) ions by activated carbon based on a native lignocellulosic precursor (2012) J. Environ. Manage, 97 (1), pp. 109-115
  • Kyzas, G.Z., Deliyanni, E.A., Matis, K.A., Graphene oxide and its application as an adsorbent for wastewater treatment (2014) J. Chem. Technol. Biot, 89, pp. 196-205
  • Nollet, L.M.L., (2007) Handbook of Water Analysis, , CRC Press USA
  • Konicki, W., Aleksandrzak, M., Moszyński, D., Mijowska, E., Adsorption of anionic azo-dyes from aqueous solutions onto graphene oxide: Equilibrium, kinetic and thermodynamic studies (2017) J. Colloid Interf. Sci, 496, pp. 188-200
  • Munagapati, V., Kim, D., Equilibrium isotherms, kinetics, and thermodynamics studies for congo red (2017) Ecotox. Environ. Safe, 141, pp. 226-234
  • Ho, Y.S., Review of second-order models for adsorption systems (2006) J. Hazard Mater, 136, pp. 681-689
  • Basso, M.C., Cerrella, E.G., Cukierman, A.L., Lignocellulosic materials as potential biosorbents of trace toxic metals from wastewater (2002) Ind. Eng. Chem. Res, 41, pp. 3580-3585
  • Basso, M.C., Cerrella, E.G., Cukierman, A.L., Activated carbons developed from a rapidly renewable biosource for removal of cadmium(II) and nickel(II) ions from dilute aqueous solutions (2002) Ind. Eng. Chem. Res, 41, pp. 180-189
  • Cukierman, A.L., Metal ion biosorption potential of lignocellulosic biomasses and marine algae for wastewater treatment (2007) Adsorpt. Sci. Technol, 25, pp. 227-244
  • Basso, M.C., Cukierman, A.L., Biosorption performance of red and green marine macroalgae for removal of trace cadmium and nickel from wastewater (2008) Int. J, Environ. Pollut, 34, pp. 340-352
  • Meng, Q., Liu, H., Huang, Z., Kong, S., Lu, X., Tomkins, P., Jiang, P., Bao, X., Mixed conduction properties of pristine bulk graphene oxide (2016) Carbon, 101, pp. 338-344
  • Morimoto, N., Kubo, T., Nishina, Y., Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications. www.nature.com/ scientific reports (2016) Scientific Reports, 6, p. 21715
  • Klímová, K., Pumera, M., Luxa, J., Jankovsky, O., Sedmidubsky, D., Matejkova, S., Sofer, Z., Graphene oxide sorption capacity toward elements over the whole periodic table: A comparative study (2016) J. Phys. Chem. C, 120, pp. 24203-24212
  • Lingamdinne, L., Koduru, J., Roha, H., Choi, Y., Chang, Y., Yang, J., Adsorption removal of Co(II) from waste-water using graphene oxide (2016) Hydrometallurgy, 165, pp. 90-96
  • Raghubanshi, H., Ngobeni, S., Osikoya, A., Shooto, N., Dikio, C., Naidoo, E., Dikio, E., Prakash, R., Synthesis of graphene oxide and its application for the adsorption of Pb+2 from aqueous solution (2017) J. Ind. Eng. Chem, 47, pp. 169-178
  • Wan, S., He, F., Wu, J., Wan, W., Gu, Y., Gao, B., Rapid and highly selective removal of lead from water using graphene oxide-hydrated manganese oxide nanocomposites (2016) J. Hazard Mater, 314, pp. 32-40
  • Nafaji, F., Removal of zinc(II) ion by graphene oxide (GO) and functionalized graphene oxide-glycine (GO-G) as adsorbents from aqueous solution: kinetics studies (2015) Int. Nano Lett, 5, pp. 171-178
  • Sahraei, R., Ghaemy, M., Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity (2017) Carbohyd. Polym, 157, pp. 823-833
  • Xing, M., Wang, J., Nanoscaled zero valent iron/graphene composite as an efficient adsorbent for Co(II) removal from aqueous solution (2016) J. Colloid Interf. Sci, 474, pp. 119-128
  • Wang, C., Ge, H., Zhao, Y., Liu, S., Zou, Y., Zhang, W., Study on the adsorption of Cu(II) by folic acid functionalized magnetic graphene oxide (2017) J. Magn. Magn. Mater, 423, pp. 421-435
  • Zare-Dorabei, R., Ferdowsi, S., Barzin, A., Tadjarodi, A., Hadjarodi, A., Highly efficient simultaneous ultrasonic-assisted adsorption of Pb(II), Cd(II), Ni(II) and Cu (II) ions from aqueous solutions by graphene oxide modified with 2,2 -dipyridylamine: Central composite design optimization (2016) Ultrason. Sonochem, 32, pp. 265-276
  • Shen, Y., Chen, B., Sulfonated graphene nanosheets as a superb adsorbent for various environmental pollutants in water (2015) Environ. Sci. Technol, 49, pp. 7364-7372
  • Roy, E., Patra, S., Madhuri, R., Sharma, P.K., Europium doped magnetic graphene oxide-MWCNT nanohybrid for estimation and removal of arsenate and arsenite from real water samples (2016) Chem. Eng. J, 299, pp. 244-254
  • Xiao, W., Yan, B., Zeng, H., Liu, Q., Dendrimer functionalized graphene oxide for selenium removal (2016) Carbon, 105, pp. 655-664
  • Fan, Y., Fu, D., Zhou, S., Lu, Y., Zhao, X., Jin, W., Zhao, Y., Facile synthesis of goethite anchored regenerated graphene oxide nanocomposite and its application in the removal of fluoride from drinking water (2016) Desalin. Water Treat, 57 (58), pp. 28393-28404
  • Kuang, L., Liu, Y., Fu, D., Zhao, Y., FeOOH-graphene oxide nanocomposites for fluoride removal from water: Acetate mediated nano FeOOH growth and adsorption mechanism (2017) J. Colloid Interf. Sci, 490, pp. 259-269
  • Kanrar, S., Debnath, S., De, P., Parashar, K., Pillay, K., Sasikumar, P., Chand Ghosh, U., Preparation, characterization and evaluation of fluoride adsorption efficiency from water of iron-aluminium oxide-graphene oxide composite material (2016) Chem. Eng. J, 306, pp. 269-279
  • Marin, P., Módenes, A., Bergamasco, R., Paraíso, P., Hamoudi, S., Synthesis, Characterization and application of ZrCl4 graphene composite supported on activated carbon for efficient removal of fluoride to obtain drinking water (2016) Water Air Soil Poll, 227, p. 479
  • Dong, N., He, F., Xin, J., Wang, Q., Lei, Z., Su, B., A novel one-step hydrothermal method to prepare CoFe2O4/graphene-like carbons magnetic separable adsorbent (2016) Mater. Res. Bull, 80, pp. 186-190
  • (2011) Guidelines for drinking-water quality
  • Staicu, L., Morin-Crini, N., Crini, G., Desulfurization: Critical step towards enhanced selenium removal from industrial effluents (2017) Chemosphere, 172, pp. 111-119
  • Nunell, G., Fernández, M., Bonelli, P., Cukierman, A.L., Conversion of biomass from an invasive species into activated carbons for removal of nitrate from wastewater (2012) Biomass Bioenerg, 44, pp. 87-95
  • Nunell, G., Fernández, M., Bonelli, P., Cukierman, A.L., Nitrate uptake improvement by modified activated carbons developed from two species of pine cones (2015) J. Colloid Interf. Sci, 440, pp. 102-108
  • Fernandez, M., Nunell, G., Bonelli, P., Cukierman, A.L., Activated carbon developed from orange peels: Batch and dynamic competitive adsorption of basic dyes (2014) Ind. Crop Prod, 62, pp. 437-445
  • Fernandez, M., Ledesma, B., Román, S., Bonelli, P., Cukierman, A.L., Dukierman, A.L., Development and characterization of activated hydrochars from orange peel as potential adsorbents for emerging organic contaminants (2015) Bioresource Technol, 183, pp. 221-228
  • Fernandez, M., Bonelli, P., Cukierman, A.L., Lemcoff, N., Modeling the biosorption of basic dyes from binary mixtures (2015) Adsorption, 21, pp. 177-183
  • Zhuang, Y., Yu, F., Chen, J., Ma, J., Batch and column adsorption of methylene blue by graphene/alginate nanocomposite: Comparison of single- network and double-network hydrogels (2016) J. Env. Chem. Eng, 4, pp. 147-156
  • Platero, E., Fernandez, M., Bonelli, P., Cukierman, A.L., Graphene oxide/ alginate beads as adsorbents: Influence of the load and the drying method on their physicochemical-mechanical properties and adsorptive performance (2017) J. Colloid Interf. Sci, 491, pp. 1-12
  • Qi, Y., Yang, M., Xu, W., He, S., Men, Y., Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions (2017) J. Colloid Interf. Sci, 486, pp. 84-96
  • Dai, J.J., Huang, T., Tian, S., Xiao, Y., Yang, J., Zhang, N., Wang, Y., Zhou, Z., High structure stability and outstanding adsorption performance of graphene oxide aerogel supported by polyvinyl alcohol for waste water treatment (2016) Mater Design, 107, pp. 187-197
  • Yang, Y., Song, S., Zhao, Z., Graphene oxide (GO)/polyacrylamide (PAM) composite hydrogels as efficient cationic dye adsorbents (2017) Colloid Surf. A, 513, pp. 315-324
  • Heidarizad, M., Şengör, S., Synthesis of graphene oxide/magnesium oxide nanocomposites with high-rate adsorption of methylene blue (2016) J. Mol. Liq, 224, pp. 607-617
  • Shi, Y., Wang, A., Wu, X., Chen, J., Feng, J., Green-assembly of threedimensional porous graphene hydrogels for efficient removal of organic dyes (2016) J. Colloid Interf. Sci, 484, pp. 254-262
  • Zhang, L., Zhang, W., Zhou, Z., Li, C., γ-Fe2O3 nanocrystals-anchored macro/meso-porous graphene as a highly efficient adsorbent toward removal of methylene blue (2016) J. Colloid Interf. Sci, 476, pp. 200-205
  • Saiphaneendra, B., Saxena, T., Singh, S., Madras, G., Srivastava, C., Synergistic effect of co-existence of hematite (α-Fe2O3) and magnetite (Fe3O4) nanoparticles on graphene sheet for dye adsorption (2017) J. Environ. Chem. Eng, 5, pp. 26-37
  • Gul, K., Sohni, S., Waqar, M., Ahmad, F., Nik Norulaini, N., Omar, M., Fik Norulaini, N., Omar, M., Functionalization of magnetic chitosan with graphene oxide for removal of cationic and anionic dyes from aqueous solution (2016) Carbohyd. Polym, 152, pp. 520-531
  • Dutta, D., Thiyagarajan, S., Bahadur, D., SnO2 quantum dots decorated reduced graphene oxide nanocomposites for efficient water remediation (2016) Chem. Eng. J, 297, pp. 55-65
  • Fei, Y., Yong, L., Sheng, H., Ma, J., Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution (2016) J. Colloid Interf. Sci, 484, pp. 196-204
  • Wang, F., Yang, B., Wang, H., Song, Q., Tan, F., Cao, Y., Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite (2016) J. of Mol. Liq, 222, pp. 188-194
  • Huang, B., Liu, Y., Li, B., Liud, S., Zeng, G., Zeng, Z., Wang, X., Eang, C., Effect of Cu(II) ions on the enhancement of tetracycline adsorption byFe3O4@SiO2-Chitosan/graphene oxide nanocomposite (2017) Carbohyd. Polym, 157, pp. 576-585
  • Terzopoulou, Z., Kyzas, G., Bikiaris, D., Recent advances in nanocomposite materials of graphene derivatives with polysaccharides (2015) Materials, 8, pp. 652-683
  • Wan, C., Li, J., Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding (2016) Carbohyd. Polym, 150, pp. 172-179
  • Shchipunov, Y., Bionanocomposites: Green sustainable materials for the near future (2012) Pure Appl. Chem, 84, pp. 2579-2607
  • Lu, T., Tao, X., Xue-Lian, H., Cheng, L., Wei-Feng, Z., Qian, Z., Chang-Sheng, Z., Post-crosslinking towards stimuli-responsive sodium alginate beads for the removal of dye and heavy metals (2015) Carbohyd. Polym, 133, pp. 587-595
  • Wu, Z., Liu, F., Li, C., Chen, X., Yu, J., A sandwich-structured graphenebased composite: preparation, characterization, and its adsorption behaviors for congo red (2016) Colloids Surf. A Physicochem. Eng, 509, pp. 65-72
  • Jabbari, V., Veleta, J., Zarei-Chaleshtori, M., Gardea-Torresdey, J., Villagrán, D., Garei-Chaleshtori, M., Gardea-Torresdey, J., Villagrán, D., Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants (2016) Chem. Eng. J, 304, pp. 774-783
  • Gothwal, R., Shashidhar, T., Antibiotic pollution in the environment: a review (2015) Clean-Soil Air Water, 43, pp. 479-489
  • Yu, Y., Li, Y., Han, S., Ma, J., Adsorptive removal of antibiotics from aqueous solution using carbon materials (2016) Chemosphere, 153, pp. 365-385
  • Khan, A., Wang, J., Li, J., Wang, X., Chen, Z., Alsaedi, A., Hayat, T., Wang, X., The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: A review (2017) Environ. Sci. Pollut. Res.
  • Wu, J., Zhao, H., Chen, R., Pham-Huy, C., Hui, X., He, H., Adsorptive removal of trace sulfonamide antibiotics by water-dispersible magnetic reduced graphene oxide-ferrite hybrids from wastewater (2016) J. Chromatogr. B, 1029-1030, pp. 106-112
  • Alayande, S., Darec, E., Grace Olorundare, F., Nkosi, D., Titus, M.A., Mamba, B., Superoleophillic electrospun polystrene/exofoliated graphite fibre for selective removal of crude oil from water (2016) Phys. Chem. Earth, 92, pp. 3-6
  • Pourmand, S., Abdouss, M., Rashidi, A., Fabrication of nanoporous graphene by chemical vapor deposition (CVD) and its application in oil spill removal as a recyclable nanosorbent (2015) J. Ind. Eng. Chem, 22, pp. 8-18
  • Zhang, L., Li, H., Lai, X., Su, X., Liang, T., Zeng, X., Thiolated graphenebased superhydrophobic sponges for oil-water separation (2017) Chem. Eng. J, 316, pp. 736-743
  • Gupta, S., Tai, N., Carbon materials as oil sorbents: a review on the synthesis and performance (2016) J. Mater. Chem. A, 4, pp. 1550-1565
  • He, Y., Liu, Y., Wu, T., Ma, J., Wang, X., Gong, Q., Kong, W., Gao, J., An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity (2013) J. Hazard Mater, 260, pp. 796-805
  • Hong, Y., Sohn, E., Park, S., Park, H., Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel (2015) Chem. Eng. J., 269, pp. 229-235
  • Kabiri, S., Tran, D., Altalhi, T., Losic, D., Outstanding adsorption performance of graphene-carbon nanotube aerogels for continuous oil removal (2014) Carbon, 80, pp. 523-533
  • Li, Z., Liu, X., Zhang, X., Chai, W., Ma, Y., Tao, J., Fao, J., Facile preparation of graphene- coated polyurethane sponge with superhydrophobic/superoleophilic properties (2015) J. Polym. Res, 22, p. 190
  • Hoai, N., Sang, N., Hoang, T., Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal (2017) Mat. Sci. Eng. B, 216, pp. 10-15
  • Song, S., Yang, H., Su, C., Jiang, Z., Lu, Z., Ultrasonic-microwave assisted synthesis of stable reduced graphene oxide modified melamine foam with superhydrophobicity and high oil adsorption capacities (2016) Chem. Eng. J, 306, pp. 504-511
  • Dong, X., Chen, J., Ma, Y., Wang, J., Chan-Park, M.B., Liu, X., Wang, L., Chen, P., Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water (2012) Chem. Commun, 48, pp. 10660-10662
  • Liu, Y., Huang, G., Gao, C., Zhang, L., Chen, M., Xu, X., Gao, J., Biu, Y., Biodegradable polylactic acid porous monoliths as effective oil sorbents (2015) Compos. Sci. Technol, 118, pp. 9-15
  • Feng, C., Yi, Z., She, F., Gao, W., Peng, Z., Garvey, C., Dumée, L., Kong, L., Superhydrophobic and superoleophilic micro-wrinkled reduced graphene oxide as a highly portable and recyclable oil sorbent (2016) ACS Appl. Mater Interf, 8, pp. 9977-9985
  • Winkless, L., Bioinspired graphene aerogel for oil spills (2014) Mater. Today, 17, pp. 473-474
  • Periasamy, A., Wu, W., Ravindranath, R., Roy, P., Lin, G., Chang, H., Polymer/ reduced graphene oxide functionalized sponges as superabsorbents for oil removal and recovery (2017) Mar. Pollut. Bull, 114, pp. 888-895
  • Zhu, H., Chen, D., An, W., Li, N., Xu, Q., Li, H., He, J., Lu, J., A robust and cost-effective superhydrophobic graphene foam for efficient oil and organic solvent recovery (2015) Small, 11, pp. 5222-5229
  • Zhao, J., Guo, Q., Wang, X., Xie, H., Chen, Y., Rhen, Y., Recycle and reusable melamine sponge coated by graphene for highly efficient oil-absorption (2016) Colloid. and Surf. A, 488, pp. 93-99
  • Yong, Y., Dong, X., Chan-Park, M., Song, H., Chen, P., Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells (2012) ACS Nano, 6, pp. 2394-2400
  • Wan, C., Li, J., Incorporation of graphene nanosheets into cellulose aerogels: enhanced mechanical, thermal, and oil adsorption properties (2016) Appl. Phys. A, 122, pp. 1051-1057
  • Loche, D., Malfatti, D., Carboni, V., Alzari, V., Marianic, A., Casula, M.F., Incorporation of graphene into silica-based aerogels and application for water remediation (2016) RSC Adv, 6, pp. 66516-66523
  • Sohn, K., Na, Y., Chang, H., Roh, M., Jang, H., Huang, J., Oil absorbing graphene capsules by capillary molding (2012) Chem. Commun, 48, pp. 5968-5970
  • Liu, J., Wang, H., Xiaocheng, L., Jia, W., Zhao, Y., Ren, S., Recyclable magnetic graphene oxide for rapid and efficient demulsification of crude oil-inwater emulsion (2017) Fuel, 189, pp. 79-87

Citas:

---------- APA ----------
Cukierman, A.L. & Bonelli, P.R. (2018) . Capture of water contaminants by a new generation of sorbents based on graphene and related materials. Nanotechnology for Sustainable Water Resources, 227-276.
http://dx.doi.org/10.1002/9781119323655.ch8
---------- CHICAGO ----------
Cukierman, A.L., Bonelli, P.R. "Capture of water contaminants by a new generation of sorbents based on graphene and related materials" . Nanotechnology for Sustainable Water Resources (2018) : 227-276.
http://dx.doi.org/10.1002/9781119323655.ch8
---------- MLA ----------
Cukierman, A.L., Bonelli, P.R. "Capture of water contaminants by a new generation of sorbents based on graphene and related materials" . Nanotechnology for Sustainable Water Resources, 2018, pp. 227-276.
http://dx.doi.org/10.1002/9781119323655.ch8
---------- VANCOUVER ----------
Cukierman, A.L., Bonelli, P.R. Capture of water contaminants by a new generation of sorbents based on graphene and related materials. Nanotechnol. for Sustain. Water Resour. 2018:227-276.
http://dx.doi.org/10.1002/9781119323655.ch8