Parte de libro

Parisi, M.; Manzano, V.E.; Flor, S.; Lissarrague, M.H.; Ribba, L.; Lucangioli, S.; D'Accorso, N.B.; Goyanes, S. "Polymeric Prosthetic Systems for Site-Specific Drug Administration: Physical and Chemical Properties" (2015) Handbook of Polymers for Pharmaceutical Technologies. 1:369-412
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

Polymeric materials having biomedical applications can be classified into two major groups according to their use: those employed in prosthetic devices, such as cardiovascular and orthopedic prostheses; and those employed as therapeutic systems, such as drug carriers. Among prosthetic systems, polymeric materials can be used as coatings or as cemented prostheses. Some of the major advantages in using polymeric materials for biomedical applications are their flexibility, biocompatibility, the possibility of tailoring their mechanical properties and their ability to incorporate therapeutic agents into their matrix in order to allow drug administration at a specific site. The aim of this chapter is to summarize the uses and applications in the field of medical devices, as well as to discuss the pharmaceutical, physical and chemical properties of two of the most popular biomedical polymers: poly(methyl methacrylate) and polyurethanes (PU). In particular, we will center our attention on their use as site-specific drug administration and their application in two great areas of prosthetic devices, bone tissue and cardiovascular engineering. We will also cover their use in diagnosis and in therapeutic treatments along with advances and future perspectives in both areas. © 2015 Scrivener Publishing LLC. All rights reserved.

Registro:

Documento: Parte de libro
Título:Polymeric Prosthetic Systems for Site-Specific Drug Administration: Physical and Chemical Properties
Autor:Parisi, M.; Manzano, V.E.; Flor, S.; Lissarrague, M.H.; Ribba, L.; Lucangioli, S.; D'Accorso, N.B.; Goyanes, S.
Filiación:IFIBA CONICET, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
CIHIDECAR-CONICET, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
Department of Physical and Analytical Chemistry, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
Palabras clave:Bone-tissue engineering; Cardiovascular-tissue engineering; Medical device; Specific drug administration; Biocompatibility; Biomechanics; Bone; Chemical properties; Diagnosis; Esters; Medical applications; Prosthetics; Tissue; Tissue engineering; Biomedical applications; Bone tissue engineering; Cardiovascular tissue engineering; Drug administration; Medical Devices; Orthopedic prosthesis; Physical and chemical properties; Therapeutic treatments; Functional polymers
Año:2015
Volumen:1
Página de inicio:369
Página de fin:412
DOI: http://dx.doi.org/10.1002/9781119041375.ch12
Título revista:Handbook of Polymers for Pharmaceutical Technologies
Título revista abreviado:Handb. of Polym. for Pharm. Technol.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97811190_v1_n_p369_Parisi

Referencias:

  • Lissarrague, M.H., Garate, H., Lamanna, M.E., D'Accorso, N.B., Goyanes, S.N., Medicinal patches and drug nanoencapsulation (2013) Nanomedicine for Drug Delivery and Therapeutics, pp. 343-378. , A.K. Mishra, ed., Wiley-Scrivener Publishing
  • Puskas, J.E., Chen, Y., Biomedical application of commercial polymers and novel polyisobutylene-based thermoplastic elastomers for soft tissue replacement (2004) Biomacromolecules, 5, pp. 1141-1154
  • Ratner, B.D., Hoffman, A.S., Schoenand, F.J., Lemons, A.E., (1996) Biomaterials Science: An Introduction to Materials in Medicine
  • Williams, D.F., Definitions in biomaterials (1987) Proceedings of a Concensus Conference of the European Society for Biomaterials
  • Drotleff, S., Lungwitz, U., Breunig, M., Dennis, A., Blunk, T., Tessmar, J., Göpferich, A., Biomimetic polymers in pharmaceutical and biomedical sciences (2004) Eur. J. Pharm. Biopharm, 58, pp. 385-407
  • Langer, R., Cima, L.G., Janet, A., Wintermantel, E., Future directions in biomaterials (1990) Biomaterials, 11, pp. 738-745
  • Elnashar, M., (2010) Biopolymers, , Sciyo Publishing, New York
  • Simchi, A., Tamjid, E., Pishbin, F., Boccaccini, A.R., Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications (2011) Nanomedicine: Nanotechnol. Biol. Med, 7, pp. 22-39
  • Chandra, R., Rustgi, R., Biodegradable polymers (1998) Prog. Polym. Sci, 23, pp. 1273-1335
  • Nair, L.S., Laurenc, C.T., Biodegradable polymers as biomaterials (2007) Prog. Polym. Sci, 32, pp. 762-798
  • Miola, M., Bistolfi, A., Valsania, M.C., Bianco, C., Fucale, G., Verné, E., Antibiotic-loaded acrylic bone cements: An in vitro study on the release mechanism and its efficacy (2013) Mater. Sci. Eng. C. Mater. Biol. Appl, 33, pp. 3025-3032
  • Jiranek, W.A., Hanssen, A.D., Greenwald, A.S., Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement (2006) J. Bone Joint Surg. Am, 88, pp. 2487-2500
  • Diefenbeck, M., Mückley, T., Hofmann, G.O., Prophylaxis and treatment of implant-related infections by local application of antibiotics (2006) Injury, 37, pp. S95-S104
  • Kruszewski, K.M., Nistico, L., Longwell, M.J., Hynes, M.J., Maurer, J.A., Hall-Stoodley, L., Gawalt, E.S., Reducing Staphylococcus aureus biofilm formation on stainless steel 316L using functionalized self-assembled monolayers (2013) Mater. Sci. Eng. C. Mater. Biol. Appl, 33, pp. 2059-2069
  • Hendriks, J.G.E., van Horn, J.R., van der Mei, H.M., Busscher, H.J., Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection (2004) Biomaterials, 25, pp. 545-556
  • Anagnostakos, K., Fürst, O., Kelm, J., Antibiotic-impregnated PMMA hip spacers: Current status (2006) Actaorthopaedica, 77, pp. 628-637
  • Mouriño, V., Boccaccini, A.R., Bone tissue engineering therapeutics: Controlled drug delivery in three-dimensional scaffolds (2010) J. R. Soc. Interface, 7, pp. 209-227
  • Gomes, F., Teixeira, P., Evaluation of antimicrobial activity of certain combinations of antibiotics against in vitro Staphylococcus epidermidis biofilms (2012) Indian J Med Res, 135, pp. 542-547
  • Murray, W.R., Use of antibiotic-containing bone cement (1984) Clin. Orthop, 190, pp. 89-95
  • Davis, J.R., Overview of biomaterials and their use in medical devices (2003) Handbook of Materials for Medical Devices, pp. 1-12. , J.R. Davis, ed., American Technical Publishers Ltd, Ohio
  • Arora, M., Chan, E.K.S., Gupta, S., Diwan, A.D., Polymethylmethacrylate bone cements and additives: A review of the literature (2013) World J. Orthop, 4, pp. 67-74
  • Magnan, B., Bondi, M., Maluta, T., Samaila, E., Schirru, L., Dall'Oca, C., Acrylic bone cement: Current concept review (2013) Musculoskelet. Surg, 97, pp. 93-100
  • Webb, J.C.J., Spencer, R.F., The role of polymethylmethacrylate bone cement in modern orthopaedic surgery (2007) J. Bone Joint Surg. Br, 89, pp. 851-887
  • Marcucci, G., Brandi, M.L., Kyphoplasty and vertebroplasty in the management of osteoporosis with subsequent (2010) Clin.Cases Miner. Bone Metab, 7, pp. 51-60
  • Chen, Y.-J., Chen, W.-H., Chen, H.-T., Hsu, H.-C., Repeat needle insertion in vertebroplasty to prevent re-collapse of the treated vertebrae (2012) Eur. J. Radiol, 81, pp. 558-561
  • Adams, M., Dolan, P., Biomechanics of vertebral compression fractures and clinical application (2011) Arch. Orthop. Trauma Surg, 131, pp. 1703-1710
  • Mattei, T.A., Mendel, E., Bourekas, E.C., Vertebral compression fractures in patients under treatment with denosumab: A contraindication for percutaneous vertebroplasty? (2014) Spine J, 14, pp. e29-e35
  • Lee, J.-S., Choi, S.-M., Kim, K.-W., Triparesis caused by gas-containing extensive epidural abscess secondary to Aeromonashydrophila infection of a thoracic vertebroplasty: A case report (2013) Spine J, 13, pp. e9-e14
  • Abdelrahman, H., Siam, A.E., Shawky, A., Ezzati, A., Boehm, H., Infection aft er vertebroplasty or kyphoplasty. A series of nine cases and review of literature (2013) Spine J, 13, pp. 1809-1817
  • Kang, J.H., Kim, H.-S., Kim, S.W., Tuberculous spondylitis aft er percutaneous vertebroplasty: Misdiagnosis or complication? (2013) Korean J. Spine, 10, pp. 97-100
  • Hernandez, L., Muñoz, M.E., Goñi, I., Gurruchaga, M., New injectable and radiopaque antibiotic loaded acrylic bone cements (2008) J. Biomed.Mater.Res. B Appl. Biomater, 87, pp. 312-320
  • Goldenberg, R.R., Campbell, C.J., Bonfiglio, M., Giant-cell tumor of bone: An analysis of two hundred and eighteen cases (1970) J. Bone Jt. Surg, 52, pp. 619-633
  • Anselmetti, G.C., Osteoplasty: Percutaneous bone cement injection beyond the spine (2010) Semin. Intervent. Radiol, 27, pp. 199-208
  • Uemura, A., Matsusako, M., Numaguchi, Y., Oka, M., Kobayashi, N., Niinami, C., Case report percutaneous sacroplasty for hemorrhagic metastases from hepatocellular carcinoma (2005) Am. J. Neuroradiol, 26, pp. 493-495
  • Tancioni, F., Lorenzetti, M.A., Navarria, P., Pessina, F., Draghi, R., Pedrazzoli, P., Scorsetti, M., Rodriguez Baena, R., Percutaneous vertebral augmentation in metastatic disease: State of the art (2011) J. Support. Oncol, 9, pp. 4-10
  • Zwolak, P., Manivel, J.C., Jasinski, P., Kirstein, M.N., Dudek, A.Z., Fisher, J., Cheng, E.Y., Cytotoxic effect of zoledronic acid-loaded bone cement on giant cell tumor, multiple myeloma, and renal cell carcinoma cell lines (2010) J. Bone Joint Surg. Am, 92, pp. 162-168
  • Handal, J.A., Schulz, J.F., Pahys, J.M., Williams, E.A., Kwok, S.C.M., Samuel, S.P., Evaluation of elution and mechanical properties of two injectable chemotherapeutic bone cements (2011) Chemotherapy, 57, pp. 268-274
  • Handal, J.A., Tiedeken, N.C., Gershkovich, G.E., Kushner, J., Dratch, B., Samuel, S.P., Polyethylene glycol improves elution properties of polymethyl methacrylate bone cements (2014) J. Surg. Res., , Press
  • Prochazka, E., Soukup, T., Hroch, M., Fuksa, L., Brcakova, E., Cermanova, J., Kolouchova, G., Micuda, S., Methotrexate released in vitro from bone cement inhibits human stem cell proliferation in S/G2 phase (2010) Int. Orthop, 34, pp. 137-142
  • Rosa, M.A., Maccauro, G., Sgambato, A., Ardito, R., Falcone, G., De Santis, V., Muratori, F., Acrylic cement added with antiblastics in the treatment of bone metastases: Ultrastructural and in vitro analysis (2003) J. Bone Jt. Surg, 85, pp. 712-716
  • Savadkoohi, D.G., Sadeghipour, P., Attarian, H., Sardari, S., Eslamifar, A., Shokrgozar, M.A., Cytotoxic effect of drugs eluted from polymethylmethacrylate on stromal giant-cell tumour cells: An in vitro study (2008) J. Bone Jt. Surg, 90, pp. 973-979
  • Clement, N., Burnett, R., Breusch, S., Should single- or two-stage revision surgery be used for the management of an infected total knee replacement? A critical review of the literature (2013) OA Orthop, 1, pp. 1-8
  • Brown, D.E., Neumann, R.D., (2004) Orthopedic Secrets, , Hanley & Belfus, Pennsylvania
  • Siopack, J., Jergesen, H.E., Total hip arthroplasty (1995) West J. Med, 162, pp. 243-249
  • Hsieh, P.-H., Shih, C.-H., Chang, Y.-H., Lee, M.S., Shih, H.-N., Yang, W.-E., Two-stage revision hip arthroplasty for infection: comparison between the interim use of antibiotic-loaded cement beads and a spacer prosthesis (2004) J. Bone Joint Surg. Am, 86 A, pp. 1989-1997
  • Hart, W.J., Jones, R.S., Two-stage revision of infected total knee replacements using articulating cement spacers and short-term antibiotic therapy (2006) J. Bone Joint Surg. Br, 88, pp. 1011-1015
  • Buchholz, H.W., Engelbrecht, H., Depot effects of various antibiotics mixed with Palacos resins (1970) Chirurg, 41, pp. 511-515
  • Barth, R.E., Vogely, H.C., Hoepelman, A.I.M., Peters, E.J.G., To bead or not to bead? Treatment of osteomyelitis and prosthetic joint-associated infections with gentamicin bead chains (2011) Int. J. Antimicrob. Agents, 38, pp. 371-375
  • Adams, K., Couch, L., Cierny, G., Calhoun, J., Mader, J.T., In vitro and in vivo evaluation of antibiotic diffusion from antibiotic-impregnated polymethylmethacrylate beads (1992) Clin. Orthop. Relat. Res, 278, pp. 244-252
  • Mader, J.T., Calhoun, J., Cobos, J., In vitro evaluation of antibiotic diffusion from antibiotic-impregnated biodegradable beads and polymethylmethacrylate beads (1997) Antimicrob. Agents Ch, 41, pp. 415-418
  • Edin, M.L., Miclau, T., Lester, G.E., Lindsey, R.W., Dahners, L.E., Effect of cefazolin and vancomycin on osteoblasts in vitro (1996) Clin. Orthop. Relat. Res, 333, pp. 245-251
  • Isefuku, S., Joyner, C.J., Simpson, A.H., Gentamicin may have an adverse effect on osteo-genesis (2003) J. Orthop. Trauma, 17, pp. 212-216
  • Patzakis, M.J., Azur, K., Wilkins, J., Sherman, R., Holtom, P., Septopal beads and autogenous bone graft ing for bone defects in patients with chronic osteomyelitis (1993) Clin. Orthop. Relat. Res, 295, pp. 112-118
  • Yamamoto, K., Miyagawa, N., Masaoka, T., Cement spacer loaded with antibiotics for infected implants of the hip joint (2009) J. Arthroplasty, 24, pp. 83-89
  • Choi, H.-R., Malchau, H., Bedair, H., Are prosthetic spacers safe to use in 2-stage treatment for infected total knee arthroplasty? (2012) J. Arthroplasty, 27, pp. 1474-1479
  • Thielen, T., Maas, S., Zuerbes, A., Waldmann, D., Anagnostakos, K., Kelm, J., Mechanical behaviour of standardized, endoskeleton-including hip spacers implanted into composite femurs (2009) Int. J. Med. Sci, 6, pp. 280-286
  • Wenke, J.C., Owens, B.D., Svoboda, S.J., Brooks, D.E., Effectiveness of commercially-available antibiotic-impregnated implants (2006) J. Bone Joint Surg. Br, 88, pp. 1102-1104
  • Regis, D., Sandri, A., Rizzo, A., Bartolozzi, P., A preformed temporary antibiotic-loaded cement spacer for the treatment of destructive septic hip arthritis: A case report (2010) Int. J. Infect. Dis, 14, pp. e259-e261
  • Yamamoto, K., Miyagawa, N., Masaoka, T., Katori, Y., Shishido, T., Imakiire, A., Clinical effectiveness of antibiotic-impregnated cement spacers for the treatment of infected implants of the hip joint (2003) J. Orthop. Sci, 8, pp. 823-828
  • Regis, D., Sandri, A., Samaila, E., Benini, A., Bondi, M., Magnan, B., Release of gentamicin and vancomycin from preformed spacers in infected total hip arthroplasties: Measurement of concentrations and inhibitory activity in patients' drainage fluids and serum (2013) Scientific World Journal, 2013, pp. 1-6
  • Haddad, F.S., Masri, B.A., Campbell, D., McGraw, R.W., Beauchamp, C.P., Duncan, C.P., The PROSTALAC functional spacer in two-stage revision for infected knee replacements (2000) J. Bone Jt. Surg, 82, pp. 807-812
  • Kent, M., Rachha, R., Sood, M., A technique for the fabrication of a reinforced moulded articulating cement spacer in two-stage revision total hip arthroplasty (2010) Int. Orthop, 34, pp. 949-953
  • Pivec, R., Naziri, Q., Issa, K., Banerjee, S., Mont, M.A., Systematic review comparing static and articulating spacers used for revision of infected total knee arthroplasty (2013) J. Arthroplasty, 29, pp. 553-557
  • Shen, H., Zhang, X., Jiang, Y., Wang, Q., Chen, Y., Wang, Q., Shao, J., The knee intraoperatively-made cement-on-cement antibiotic-loaded articulating spacer for infected total knee arthroplasty (2010) Knee, 17, pp. 407-411
  • Wan, Z., Karim, A., Momaya, A., Incavo, S.J., Mathis, K.B., Preformed articulating knee spacers in 2-stage total knee revision arthroplasty: Minimum 2-year follow-up (2012) J. Arthroplasty, 27, pp. 1469-1473
  • Qiang, Z., Zhi, P., Hang, L., Use of antibiotic cement rod to treat intramedullary infection aft er nailing: Preliminary study in 19 patients (2007) Arch. Orthop. Trauma Surg, 127, pp. 945-951
  • Dunne, N.J., Hill, J., McAfee, P., Kirkpatrick, R., Patrick, S., Tunney, M., Incorporation of large amounts of gentamicin sulphate into acrylic bone cement: Effect on handling and mechanical properties, antibiotic release, and biofilm formation (2008) Proc. Inst. Mech. Eng. Part H J. Eng. Med, 222, pp. 355-366
  • Giavaresi, G., Borsari, V., Fini, M., Giardino, R., Sambri, V., Gaibani, P., Soffiatti, R., Preliminary investigations on a new gentamicin and vancomycin-coated PMMA nail for the treatment of bone and intramedullary infections: An experimental study in the rabbit (2008) J. Orthop. Res, 26, pp. 785-792
  • Riel, R.U., Gladden, P.B., A simple method for fashioning an antibiotic cement-coated interlocking intramedullary nail (2010) Am. J. Orthop, 39, pp. 18-21
  • Mauffrey, C., Chaus, G.W., Butler, N., Young, H., MR-compatible antibiotic interlocked nail fabrication for the management of long bone infections: First case report of a new technique (2014) Patient Saf. Surg, 8, pp. 14-21
  • Dhanasekhar, R., Jacob, P.J., Francis, J., Antibiotic cement impregnated nailing in the management of infected non-union of femur and tibia (2013) Kerala J. Orthop, 26, pp. 93-97
  • Chang, Y., Chen, W.-C., Hsieh, P.-H., Chen, D.W., Lee, M.S., Shih, H.-N., Ueng, S.W.N., In vitro activities of daptomycin-, vancomycin-, and teicoplanin-loaded polymethylmethacrylate against methicillin-susceptible, methicillin-resistant, and vancomycin-intermediate strains of Staphylococcus aureus (2011) Antimicrob. Agents Ch, 55, pp. 5480-5484
  • Phillips, H., Boothe, D.M., Shofer, F., Davidson, J.S., Bennett, R.A., In vitro elution studies of amikacinand cefazolin from polymethylmethacrylate (2007) Vet. Surg, 36, pp. 272-278
  • Dunne, N.J., Orr, J.F., Curing characteristics of acrylic bone cement (2002) J. Mater. Sci. Mater. Med, 12, pp. 17-22
  • Feith, R., Side-effects of acrylic cement implanted into bone (1975) Acta. Orthop. Scand. Suppl., 161, pp. 3-136
  • De Wijn, J.R., Driessens, F.C., Slooff, T.J., Dimensional behavior of curing bone cement masses (1975) J. Biomed. Mater. Res, 9, pp. 99-103
  • DiPisa, J., Sih, G., Berman, A., The temperature problem at the bone-acrylic cement interface of the total hip replacement (1976) Clin. Orthop. Relat. Res, 121, pp. 95-98
  • Lissarrague, M.H., Fascio, M.L., Goyanes, S., D'Accorso, N.B., Acrylic bone cements: The role of nanotechnology in improving osteointegration and tunable mechanical properties (2014) J. Biomed. Nanotechnol, 10, pp. 3536-3557
  • Pascual, B., Vázquez, B., Gurrachaga, M., Goñi, I., Ginebra, M.P.P., Gil, F.J.J., Planell, J.A.A., San Román, J., New aspects of the effect of size and size distribution on the setting parameters and mechanical properties of acrylic bone cements (1996) Biomaterials, 17, pp. 509-516
  • Chou, P.M., Mariatti, M., The properties of polymethyl methacrylate (PMMA) bone cement filled with titania and hydroxyapatite fillers (2010) Polym. Plast. Technol. Eng, 49, pp. 1163-1171
  • Dunne, N.J., Orr, J.F., Influence of mixing techniques on the physical properties of acrylic bone cement (2001) Biomaterials, 22, pp. 1819-1826
  • Saha, S., Pal, S., Mechanical properties of bone cement: A review (1984) J. Biomed. Mater. Res, 18, pp. 435-462
  • van de Belt, H., Neut, D., Uges, D.R., Schenk, W., van Horn, J., van der Mei, H., Busscher, H., Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release (2000) Biomaterials, 21, pp. 1981-1987
  • Giavaresi, G., Bertazzoni-Minelli, E., Sartori, M., Benini, A., Parrilli, A., Maltarello, M.C., Salamanna, F., Fini, M., New PMMA-based composites for preparing spacer devices in prosthetic infections (2012) J. Mater. Sci. Mater. Med, 23, pp. 1247-1257
  • Samuel, S., Antibiotic loaded acrylic bone cement in orthopaedic trauma (2012) Orthopaedic Trauma, Osteomyelitis, , P.M.S. Baptista, ed., Rijeka, Croatia: InTech
  • González Della Valle, A., Bostrom, M., Brause, B., Harney, C., Salvati, E.A., Effective bactericidal activity of tobramycin and vancomycin eluted from acrylic bone cement (2001) Acta Orthop. Scand, 72. , 273-240
  • Masri, B.A., Duncan, C.P., Beauchamp, C.P., Long-term elution of antibiotics from bone-cement: An in vivo study using the prosthesis of antibiotic-loaded acrylic cement (PROSTALAC) system (1998) J. Arthroplasty, 13, pp. 331-338
  • Chang, Y.H., Tai, C.L., Hsu, H.Y., Hsieh, P.H., Lee, M.S., Ueng, S.W.N., Liquid antibiotics in bone cement: An effective way to improve the efficiency of antibiotic release in antibiotic loaded bone cement (2014) Bone Joint Res, 3, pp. 246-251
  • Hsieh, P.-H., Tai, C.-L., Lee, P.-C., Chang, Y.-H., Liquid gentamicin and vancomycin in bone cement: A potentially more cost-effective regimen (2009) J. Arthroplasty, 24, pp. 125-130
  • Schaffner, P., Meyer, J., Dard, M., Wenz, R., Nies, B., Verrier, S., Kessler, H., Kantlehner, M., Induced tissue integration of bone implants by coating with bone selective RGD-peptides in vitro and in vivo studies (1999) J. Mater. Sci. Mater. Med, 10, pp. 837-839
  • Ito, Y., Zheng, J., Imanishi, Y., Yonezawa, K., Kasuga, M., Protein-free cell culture on an artificial substrate with covalently immobilized insulin (1996) Proc. Natl. Acad. Sci. USA, 3, pp. 3598-3601
  • Ondeck, C.L., Habib, A.H., Ohodnicki, P., Miller, K., Sawyer, C.A., Chaudhary, P., McHenry, M.E., Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating (2009) J. Appl. Phys, 105. , 07B324
  • Matsumine, A., Kusuzaki, K., Matsubara, T., Shintani, K., Satonaka, H., Wakabayashi, T., Miyazaki, S., Uchida, A., Novel hyperthermia for metastatic bone tumors with magnetic materials by generating an alternating electromagnetic field (2007) Clin. Exp. Metastasis, 24, pp. 191-200
  • Kawashita, M., Kawamura, K., Li, Z., PMMA-based bone cements containing magnetite particles for the hyperthermia of cancer (2010) Actabiomaterialia, 6, pp. 3187-3192
  • Smith, K.A., Carrino, J.A., MRI-guided interventions of the musculoskeletal system (2008) J. Magn. Reson. Imaging, 27, pp. 339-346
  • Wichlas, F., Seebauer, C.J., Schilling, R., Bail, H.J., Teichgra, U.K.M., A signal-inducing bone cement for magnetic resonance imaging-guided spinal surgery based on hydroxyapatite and polymethylmethacrylate (2012) Cardiovasc. Intervent. Radiol, 35, pp. 661-667
  • Meyer, S., Floerkemeier, T., Windhagen, H., Histological osseointegration of a calcium phosphate bone substitute material in patients (2007) Biomed. Mater. Eng, 17, pp. 347-356
  • Hernández, L., Gurruchaga, M., Goñi, I., Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Formulation and rheological behavior (2009) J. Mater. Sci. Mater. Med, 20, pp. 89-97
  • Kim, S.B., Kim, Y.J., Yoon, T.L., Park, S.A., Cho, I.H., Kim, E.J., Kim, I.A., Shin, J.-W., The characteristics of a hydroxyapatite-chitosan-PMMA bone cement (2004) Biomaterials, 25, pp. 5715-5723
  • Li, G., Li, D., Niu, Y., He, T., Chen, K.C., Xu, K., Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials (2014) J. Biomed. Mater. Res, 102, pp. 685-697
  • Solanki, A., Mehta, J., Thakore, S., Structure-property relationships and biocompatibility of carbohydrate crosslinked polyurethanes (2014) Carbohydr.Polym, 110, pp. 338-344
  • Ali, F.B., Kang, D.J., Kim, M.P., Cho, C.-H., Kim, B.J., Synthesis of biodegradable and flexible, polylactic acid based, thermoplastic polyurethane with high gas barrier properties (2014) Polym. Int, 63, pp. 1620-1626
  • Fernández-d'Arlas, B., Corcuera, M., Runt, J., Eceiza, A., Block architecture influence on the structure and mechanical performance of drawn polyurethane elastomers (2014) Polym. Int, 63, pp. 1278-1287
  • Bayer, O., Das di-isocyanat-polyadditionsverfahren (Polyurethane) (1947) Angew. Chem, 59, pp. 257-272
  • Gao, X., Guo, Y., Tian, Y., Li, S., Zhou, S., Wang, Z., Synthesis and characterization of polyurethane/zinc borate nanocomposites (2011) Colloid Surf. A-Physicochem. Eng. Asp, 384, pp. 2-8
  • Guelcher, S.A., Srinivasan, A., Dumas, J.E., Didier, J.E., McBride, S., Hollinger, J.O., Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates (2008) Biomaterials, 29, pp. 1762-1775
  • Li, W.B., Zhou, C., Cao, C.B., Li, M.S., New development of polyurethanes in medical applications (2011) Chin. J. Mech. Eng, 30, pp. 130-134
  • Sun, X., Gao, H., Wu, G., Wang, Y., Fan, Y., Ma, J., Biodegradable and temperature-responsive polyurethanes for adriamycin delivery (2011) Int. J. Pharm, 412, pp. 52-58
  • Di Battista, G., Peerlings, H.W.I., Kaufhold, W., Aliphatic TPUs for light-stable applications (2003) Rubber World, 227, pp. 39-42
  • Arce, S.M., Kolender, A.A., Varela, O., Synthesis of -amino-a-phenylcarbonate alkanes and their polymerization to [n]-polyurethanes (2010) Polym. Int, 59, pp. 1212-1220
  • Fidalgo, D.M., Kolender, A.A., Varela, O., Stereoregular poly-O-methyl [m,n]-polyurethanes derived from D-mannitol (2013) J. Polym. Sci. Part A Polym. Chem, 51, pp. 463-470
  • Franz, T., (2014) Cardiovascular and Cardiac Therapeutic Devices, , Springer Berlin
  • Yang, J., Zeng, Y., Zhang, C., Chen, Y.-X., Yang, Z., Li, Y., Leng, X., Song, C.-X., The prevention of restenosis in vivo with a VEGF gene and paclitaxel co-eluting stent (2013) Biomaterials, 34, pp. 1635-2143
  • Jain, K., (2011) Applications of Biotechnology in Cardiovascular Therapeutics, , Springer
  • Habara, M., Terashima, M., Nasu, K., Kaneda, H., Inoue, K., Ito, T., Kamikawa, S., Suzuki, T., Difference of tissue characteristics between early and very late restenosis lesions aft er bare-metal stent implantation: An optical coherence tomography study (2011) Circ. Cardiovasc. Interv, 4, pp. 232-238
  • Slavin, L., Chhabra, A., Tobis, J., Drug-eluting stents: Preventing restenosis (2007) Cardiol. Rev, 15, pp. 1-12
  • Akin, I., Schneider, H., Ince, H., Kische, S., Rehders, T.C., Chatterjee, T., Nienaber, C.A., Second- and third-generation drug-eluting coronary stents: Progress and safety (2011) Herz, 36, pp. 190-196
  • Ako, J., Bonneau, H.N., Honda, Y., Fitzgerald, P.J., Design criteria for the ideal drug-eluting stent (2007) Am. J. Cardiol, 100, pp. 3M-9M
  • Mani, G., Feldman, M.D., Patel, D., Agrawal, C.M., Coronary stents: A materials perspective (2007) Biomaterials, 28, pp. 1689-1710
  • Raval, A., Choubey, A., Engineer, C., Kotadia, H., Kothwala, D., Novel biodegradable polymeric matrix coated cardiovascular stent for controlled drug delivery (2007) Trends Biomater. Artif. Organs, 20, pp. 101-110
  • Kuraishi, K., Iwata, H., Nakano, S., Kubota, S., Tonami, H., Toda, M., Toma, N., Taki, W., Development of nanofiber-covered stents using electrospinning: In vitro and acute phase in vivo experiments (2009) J. Biomed. Mater. Res. B Appl. Biomater, 88, pp. 230-239
  • Byeongtaek, O.H., Lee, C.H., Advanced cardiovascular stent coated with nanofiber (2013) Mol. Pharm, 10, pp. 4432-4442
  • Bajaj, S., Parikh, R., Hamdan, A., Bikkina, M., Covered-stent treatment of coronary aneurysm aft er drug-eluting stent placement (2010) Texas Hear. Inst. J, 37, pp. 449-454
  • Jamshidi, P., Resink, T., Erne, P., Staged stenting of a long aneurysm of a saphenous vein coronary artery bypass graft (2008) J. Invasive Cardiol, p. 20
  • Müller-Hülsbeck, S., Walluscheck, K.P., Priebe, M., Grimm, J., Cremer, J., Heller, M., Experience on endothelial cell adhesion on vascular stents and stent-grafts: First in vitro results (2002) Invest. Radiol, 37, pp. 314-320
  • Cameron, A., Davis, K., Coronary bypass surgery with internal-thoracic-artery grafts-Effects on survival over a 15-year period (1996) N. Engl. J. Med, 334, pp. 216-219
  • Domb, A.J., Khan, W., (2014) Focal Controlled Drug Delivery, , Springer Boston
  • Jones, D., Rutherford, R., Factors affecting the patency of small-caliber prostheses: Observations in a suitable canine model (1991) J. Vasc. Surg, 14, pp. 441-451
  • Esquivel, C.O., William, F., Why small caliber vascular graft s fail: A review of clinical and experimental experience and the significance of the interaction of blood at the interface (1986) J. Surg. Res, 41, pp. 1-15
  • Ishii, Y., Kronengold, R.T., Virmani, R., Rivera, E.A., Goldman, S.M., Prechtel, E.J., Schuessler, R.B., Damiano, R.J., Novel bioengineered small caliber vascular graft with excellent one-month patency (2007) Ann. Thorac. Surg, 83, pp. 517-525
  • Montini Ballarin, F., Caracciolo, P.C., Blotta, E., Ballarin, V.L., Abraham, G.A., Optimization of poly(L-lactic acid)/segmented polyurethane electrospinning process for the production of bilayered small-diameter nanofibrous tubular structures (2014) Mater. Sci. Eng. C. Mater. Biol. Appl, 42, pp. 489-499
  • Feng, S.-S., Zeng, W., Teng Lim, Y., Zhao, L., Yin Win, K., Oakley, R., HinTeoh, S., Pan, S., Vitamin E TPGS-emulsified poly(lactic-co-glycolic acid) nanoparticles for cardiovascular restenosis treatment (2007) Nanomedicine, 2, pp. 333-344
  • Granada, J.F., Price, M.J., French, P.A., Steinhubl, S.R., Cutlip, D.E., Becker, R.C., Smyth, S.S., Dauerman, H.L., Platelet-mediated thrombosis and drug-eluting stents (2011) Circ. Cardiovasc. Interv, 4, pp. 629-637
  • Zhang, D., Yang, R., Wang, S., Dongm, Z., Paclitaxel: New uses for an old drug (2014) Drug Des. Devel.Ther, 8, pp. 279-284
  • Herdeg, C., Oberhoff, M., Baumbach, A., Blattner, A., Heinle, H., Karsch, K.R., Axel, D.I., Schro, S., Local paclitaxel delivery for the prevention of restenosis: Biological effects and efficacy in vivo (2000) J. Am. Coll. Cardiol, 35, pp. 1969-1976
  • Han, J., Farah, S., Domb, A.J., Lelkes, P.I., Electrospunrapamycin-eluting polyurethane fibers for vascular graft s (2013) Pharm. Res, 30, pp. 1735-1748
  • Hafeman, A.E., Zienkiewicz, K.J., Carney, E., Litzner, B., Stratton, C., Wenke, J.C., Guelcher, S.A., Local delivery of tobramycin from injectable biodegradable polyurethane scaffolds (2010) J. Biomater. Sci. Polym. Ed, 21, pp. 95-112
  • Abraham, G.A., de Queiroz, A.A.A., Roman, J.S., Immobilization of a nonsteroidalantiinflammatory drug onto commercial segmented polyurethane surface to improve haemocompatibilityproperties (2002) Biomaterials, 23, pp. 1625-1638
  • Albanese, A., Barbucci, R., Belleville, J., Bowry, S., Eloy, R., Lemke, H.D., Sabatini, L., In vitro biocompatibility evaluation of a heparinizable material (PUPA), based on polyurethane and poly(amido-amine) components (1994) Biomaterials, 15, pp. 129-136
  • Kang, I.-K., Kiel, Y., Kwon, O.H., Lee, Y.M., Sung, Y.K., Preparation and surface characterization of functional group-graft ed and hepk &-immobilized polyurethanes by plasma glow discharge (1996) Biomaterials, 17, pp. 841-847
  • Ito, Y., Sisido, M., Imanishi, Y., Synthesis and antithrombogenicity of polyetherurethane urea containing quaternary ammonium groups in the side chains and of the polymer/heparin complex (1986) J. Biomed.Mater. Res, 20, pp. 1017-1033
  • Wan Kim, S., Jacobs, H., Design of nonthrombogenic polymer surfaces for blood-contacting medical devices (1996) Blood Purif, 14, pp. 357-372
  • Marois, Y., Guidoin, R., Biocompatibility of polyurethanes (2000) Madame Curie Bioscience Database, , Austin (TX): Landes Bioscience
  • Maksimenko, A.V., Torchilin, V.P., Water-soluble urokinase derivatives of combined action (1985) Th romb. Res, 38, pp. 277-288
  • Wilson, J.E., Hemocompatible polymers: Preparation and properties (1986) Polym. Plast. Technol. Conf, 25, pp. 233-239
  • Bakker, W.W., van der Lei, B., Nieuwenhuisb, P., Robinson, P., Bartels, H.L., Reduced thrombogenicity of artificial materials by coating with ADPase (1991) Biomaterials, 12, pp. 603-606
  • Aldenhoffand, Y.B., Koole, L.H., Studies on a new strategy for surface modification of polymeric biomaterials (1995) J. Biomed. Mater. Res, 29, pp. 917-928
  • Szycher, M., Berceli, S.A., Dempsey, D.J., Quist, W.C., Logerfo, F.W., Covalent linkage of recombinant hirudin to a novel ionic poly (carbonate) urethane polymer with protein binding sites: Determination of surface antithrombin activity (1998) Artif. Organs, 22, pp. 657-665
  • Sivak, W.N., Pollack, I.F., Petoud, S., Zamboni, W.C., Zhang, J., Beckman, E.J., Catalyst-dependent drug loading of LDI-glycerol polyurethane foams leads to differing controlled release profiles (2008) Actabiomaterialia, 4, pp. 1263-1274
  • Sivak, W.N., Pollack, I.F., Petoud, S., Zamboni, W.C., Zhang, J., Beckman, E.J., LDI-glycerol polyurethane implants exhibit controlled release of DB-67 and anti-tumor activity in vitro against malignant gliomas (2008) Actabiomaterialia, 4, pp. 852-862
  • Hatefiand, A., Amsden, B., Camptothecin delivery methods (2002) Pharm. Res, 19, pp. 1389-1399
  • Li, Q., Zu, Y.Y.G., Shi, R.Z., Yao, L.P., Review camptothecin: Current perspectives (2006) Curr. Med. Chem, 13, pp. 2021-2039
  • Sivak, W.N., Zhang, J., Petoud, S., Beckman, E.J., Simultaneous drug release at different rates from biodegradable polyurethane foams (2009) Actabiomaterialia, 5, pp. 2398-2408
  • Shiramizu, K., Lovric, V., Leung, A., Walsh, W.R., How do porosity-inducing techniques affect antibiotic elution from bone cement? An in vitro comparison between hydrogen peroxide and a mechanical mixer (2008) J. Orthop. Traumatol, 9, pp. 17-22
  • Zilberman, M., Elsner, J.J., Antibiotic-eluting medical devices for various applications (2008) J. Control. Release, 130, pp. 202-215
  • Fong, E.L.S., Watson, B.M., Kasper, F.K., Mikos, A.G., Building bridges leveraging interdisciplinary collaborations in the development of biomaterials to meet clinical needs (2013) Adv. Mater, 24, pp. 4995-5013
  • Vorndran, E., Spohn, N., Nies, B., Mechanical properties and drug release behavior of bioactivated PMMA cements (2012) J. Biomater. Appl, 26, pp. 581-594
  • Schiffman, J.D., Schauer, C.L., A review: Electrospinning of biopolymer nanofibers and their applications (2008) Polym. Rev, 48, pp. 317-352
  • Bhardwaj, N., Kundu, S.C., Electrospinning: A fascinating fiber fabrication technique (2010) Biotechnol. Adv, 28, pp. 325-347
  • Agarwal, S., Wendorffand, J.H., Greiner, A., Use of electrospinning technique for biomedical applications (2008) Polymer, 49, pp. 5603-5621
  • Ribba, L., Parisi, M., D'Accorso, N.B., Goyanes, S., Electrospun nanofibrous mats: From vascular repair to osteointegration (2014) J. Biomed. Nanotechnol, 10, pp. 3508-3535
  • Li, L., Wang, L., Xu, Y., Lv, L.-X., Preparation of gentamicin-loaded electrospun coating on titanium implants and a study of their properties in vitro (2012) Arch. Orthop. Trauma Surg, 132, pp. 897-903
  • Zhang, L., Yan, J., Yin, Z., Tang, C., Guo, Y., Li, D., Wei, B., Wang, L., Electrospunvancomycin-loaded coating on titanium implants for the prevention of implant-associated infections (2014) Int. J. Nanomedicine, 9, pp. 3027-3036
  • Jansen, J., Willeke, S., Reiners, B., Harbott, P., Reul, H., Lo, H.B., Däbritz, S., Messmer, B.J., Advances in design principle and fluid dynamics of a flexible polymeric heart valve (1991) ASAIO Trans, 37, pp. M451-M453
  • Huang, W.M., Thermo-moisture responsive polyurethane shape memory polymer for biomedical devices (2010) Open Med. Devices J, 2, pp. 11-19
  • Buckley, P.R., Mckinley, G.H., Wilson, T.S., Small, W., Benett, W.J., Bearinger, J.P., Mcelfresh, M.W., Maitland, D.J., Inductively heated shape memory polymer for the magnetic actuation of medical devices (2006) Trans. Biomed. Eng, 53, pp. 2075-2083
  • Liu, Y., Lv, H., Lan, X., Leng, J., Du, S., Review of electro-active shape-memory polymer composite (2009) Compos. Sci. Technol, 69, pp. 2064-2068

Citas:

---------- APA ----------
Parisi, M., Manzano, V.E., Flor, S., Lissarrague, M.H., Ribba, L., Lucangioli, S., D'Accorso, N.B.,..., Goyanes, S. (2015) . Polymeric Prosthetic Systems for Site-Specific Drug Administration: Physical and Chemical Properties. Handbook of Polymers for Pharmaceutical Technologies, 1, 369-412.
http://dx.doi.org/10.1002/9781119041375.ch12
---------- CHICAGO ----------
Parisi, M., Manzano, V.E., Flor, S., Lissarrague, M.H., Ribba, L., Lucangioli, S., et al. "Polymeric Prosthetic Systems for Site-Specific Drug Administration: Physical and Chemical Properties" . Handbook of Polymers for Pharmaceutical Technologies 1 (2015) : 369-412.
http://dx.doi.org/10.1002/9781119041375.ch12
---------- MLA ----------
Parisi, M., Manzano, V.E., Flor, S., Lissarrague, M.H., Ribba, L., Lucangioli, S., et al. "Polymeric Prosthetic Systems for Site-Specific Drug Administration: Physical and Chemical Properties" . Handbook of Polymers for Pharmaceutical Technologies, vol. 1, 2015, pp. 369-412.
http://dx.doi.org/10.1002/9781119041375.ch12
---------- VANCOUVER ----------
Parisi, M., Manzano, V.E., Flor, S., Lissarrague, M.H., Ribba, L., Lucangioli, S., et al. Polymeric Prosthetic Systems for Site-Specific Drug Administration: Physical and Chemical Properties. Handb. of Polym. for Pharm. Technol. 2015;1:369-412.
http://dx.doi.org/10.1002/9781119041375.ch12