Parte de libro

Martínez, B.; García, P.; Gonzalez, A.R.; Piuri, M.; Raya, R.R. "Bacteriophages of Lactic Acid Bacteria and Biotechnological Tools" (2015) Biotechnology of Lactic Acid Bacteria: Novel Applications: Second Edition:100-119
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

The study of lactic acid bacteria (LAB) phages has not only brought information about the types and characteristics of lytic phages present in the fermentation industry but, in particular, streptococcal comparative phage genomics has also significantly contributed to the field of phage taxonomy and to the characterization of the clustered regularly interspaced short palindromic repeats (CRISPR) system. LAB phages have been isolated from diverse natural sources and upon induction of lysogens. One of the approaches to minimize the negative impact of phages in dairy is on the implementation of technological hurdles to reduce phage contamination. In the context of LAB phages, the TP901-1 serine integrase can carry out intramolecular integration on a transfected plasmid substrate and intrachromosomal deletions in human cells. LAB phages can also be regarded as a very valuable biocontrol tool to prevent growth of LAB in those biotechnological processes in which LAB are undesirable. © 2016 by John Wiley & Sons, Ltd. All rights reserved.

Registro:

Documento: Parte de libro
Título:Bacteriophages of Lactic Acid Bacteria and Biotechnological Tools
Autor:Martínez, B.; García, P.; Gonzalez, A.R.; Piuri, M.; Raya, R.R.
Filiación:DairySafe Group, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Spain
Departamento de Química Biológica, FCEyN, Universidad de Buenos Aires, Argentina
Centro de Referencia para Lactobacilos (CERELA)-CONICET, Argentina
Palabras clave:Antiphage strategies; Bacteriophages; Biocontrol tools; Biotechnological tools; Lactic acid bacteria; Phage-based molecular tools; Amino acids; Bacteria; Biocontrol; Biotechnology; Laboratories; Lactic acid; Antiphage strategies; Biotechnological process; Biotechnological tools; Human cells; Lactic acid bacteria; Molecular tools; Natural sources; Palindromic; Bacteriophages
Año:2015
Página de inicio:100
Página de fin:119
DOI: http://dx.doi.org/10.1002/9781118868386.ch6
Título revista:Biotechnology of Lactic Acid Bacteria: Novel Applications: Second Edition
Título revista abreviado:Biotechnol. of Lact. Acid Bact.: Novel Appl.: Second Ed.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97811188_v_n_p100_Martinez

Referencias:

  • Ali, Y., Koberg, S., Hessner, S., Sun, X., Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type (2014) Front Microbiol, 5 (98)
  • Alvarez, M.A., Herrero, M., Suarez, J.E., The site-specific recombination system of the Lactobacillus species bacteriophage A2 integrates in Gram-positive and Gram-negative bacteria (1998) Virology, 250, pp. 185-193
  • Alvarez, M.A., Rodriguez, A., Suarez, J.E., Stable expression of the Lactobacillus casei bacteriophage A2 repressor blocks phage propagation during milk fermentation (1999) J Appl Microbiol, 86, pp. 812-816
  • Auvray, F., Coddeville, M., Ritzenthaler, P., Dupont, L., Plasmid integration in a wide range of bacteria mediated by the integrase of Lactobacillus delbrueckii bacteriophage mv4 (1997) J Bacteriol, 179, pp. 1837-1845
  • Bao, Z., Cartinhour, S., Swingle, B., Substrate and target sequence length influence RecTE(Psy) recom- bineering efficiency in Pseudomonas syringae (2012) PloS One, 7
  • Barrangou, R., CRISPR-Cas systems and RNA-guided interference (2013) WIREs RNA, 4, pp. 267-278
  • Barrangou, R., Fremaux, C., Deveau, H., CRISPR provides acquired resistance against viruses in prokaryotes (2007) Science, 315, pp. 1709-1712
  • Barrangou, R., Horvath, P., CRISPR: new horizons in phage resistance and strain identification (2012) Annu Rev Food Sci Technol, 3, pp. 143-162
  • Bebeacua, C., Lorenzo Fajardo, J.C., Blangy, S., X-ray structure of a superinfection exclusion lipoprotein from phage TP-J34 and identification of the tape measure protein as its target (2013) Mol Microbiol, 89, pp. 152-165
  • Belteki, G., Gertsenstein, M., Ow, D.W., Nagy, A., Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase (2003) Nat Biotechnol, 21, pp. 321-324
  • Binder, S., Siedler, S., Marienhagen, J., Recombineering in Corynebacterium glutamicum combined with optical nanosensors: a general strategy for fast producer strain generation (2013) Nucleic Acids Res, 41, pp. 6360-6369
  • Boch, J., Scholze, H., Schornack, S., Breaking the code of DNA binding specificity of TAL-type III effectors (2009) Science, 326, pp. 1509-1512
  • Bolotin, A., Quinquis, B., Sorokin, A., Ehrlich, S.D., Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin (2005) Microbiology, 151, pp. 2551-2561
  • Brpndsted, L., Hammer, K., Phages of Lactococcus lactis (2006) The Bacteriophages, pp. 572-592. , In: ((ed)R. Calendar) Oxford University Press, Inc., New York, USA
  • Brussow, H., Desiere, F., Evolution of tailed phages. Insights from comparative phage genomics (2006) The Bacteriophages, pp. 26-36. , In ((ed.) R. Calendar) Oxford University Press, Inc., New York, USA
  • Brussow, H., Suarez, J.E., Lactobacillus phages (2006) The Bacteriophages, pp. 653-666. , In ((ed.) R. Calendar) Oxford University Press, Inc., New York, USA
  • Canchaya, C., Fournous, G., Brussow, H., The impact of prophages on bacterial chromosomes (2004) Mol Microbiol, 53, pp. 9-18
  • Canchaya, C., Proux, C., Fournous, G., Prophage genomics (2003) Microbiol Mol Biol Rev, 67, pp. 238-276
  • Catalao, M.J., Gil, F., Moniz-Pereira, J., Pimentel, M., The mycobacteriophage Ms6 encodes a chaperonelike protein involved in the endolysin delivery to the peptidoglycan (2010) Mol Microbiol, 77, pp. 672-686
  • Catalao, M.J., Milho, C., Gil, F., A second endolysin gene is fully embedded in-frame with the lysA gene of mycobacteriophage Ms6 (2011) PloS One, 6
  • Chassy, B.M., Flickinger, J.L., Transformation of Lactobacillus casei by elctroporation (1987) FEMS Microbiol Lett, 44, pp. 173-177
  • Chopin, M.C., Chopin, A., Bidnenko, E., Phage abortive infection in lactococci: variations on a theme (2005) Curr Opin Microbiol, 8, pp. 473-479
  • Christiansen, B., Johnsen, M.G., Stenby, E., Characterization of the lactococcal temperate phage TP901-1 and its site-specific integration (1994) J Bacteriol, 176, pp. 1069-1076
  • Coffey, A., Ross, R.P., Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application (2002) Antonie van Leeuwenhoek, 82, pp. 303-321
  • Cong, L., Ran, F.A., Cox, D., Multiplex genome engineering using CRISPR/Cas systems (2013) Science, 339, pp. 819-823
  • Copeland, N.G., Jenkins, N.A., Court, D.L., Recombineering: a powerful new tool for mouse functional genomics (2001) Nat Rev Genet, 2, pp. 769-779
  • Costantino, N., Court, D.L., Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants (2003) PNAS (USA), 100, pp. 15748-15753
  • Court, D.L., Sawitzke, J.A., Thomason, L.C., Genetic engineering using homologous recombination (2002) Ann Rev Genet, 36, pp. 361-388
  • Datsenko, K.A., Wanner, B.L., One-step inactivation of chromosomal genes in (2000) Escherichia coli PNAS (USA), 97 (12), pp. 6640-6645. , K- using PCR products
  • Datta, S., Costantino, N., Zhou, X., Court, D.L., Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages (2008) PNAS (USA), 105, pp. 1626-1631
  • Deasy, T., Mahony, J., Neve, H., Isolation of a virulent Lactobacillus brevis phage and its application in the control of beer spoilage (2011) J Food Prot, 74, pp. 2157-2161
  • Dedrick, R.M., Marinelli, L.J., Newton, G.L., Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage Giles (2013) Mol Microbiol, 88, pp. 577-589
  • Delannoy, S., Beutin, L., Fach, P., Use of clustered regularly interspaced short palindromic repeat sequence polymorphisms for specific detection of enterohemorrhagic Escherichia coli strains of serotypes O26:H11, O45:H2, O103:H2, O111:H8, O121:H19, O145:H28, and O157:H7 by real-time PCR (2012) J Clin Microbiol, 50, pp. 4035-4040
  • Deltcheva, E., Chylinski, K., Sharma, C.M., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III (2011) Nature, 471, pp. 602-607
  • Desmyter, A., Farenc, C., Mahony, J., Viral infection modulation and neutralization by camelid nanobodies (2013) PNAS (USA), 110, pp. 1371-1379
  • Deveau, H., Labrie, S.J., Chopin, M.C., Moineau, S., Biodiversity and classification of lactococcal phages (2006) Appl Environ Microbiol, 72, pp. 4338-4346
  • Diancourt, L., Passet, V., Chervaux, C., Multilocus sequence typing of Lactobacillus casei reveals a clonal population structure with low levels of homologous recombination (2007) Appl Environ Microbiol, 73, pp. 6601-6611
  • Djordjevic, G.M., O'Sullivan, D.J., Walker, S.A., A triggered-suicide system designed as a defense against bacteriophages (1997) J Bacteriol, 179, pp. 6741-6748
  • Dupont, L., Boizet-Bonhoure, B., Coddeville, M., Characterization of genetic elements required for site-specific integration of Lactobacillus delbrueckii subsp. bulgaricus bacteriophage mv4 and construction of an integration-proficient vector for Lactobacillus plantarum (1995) J Bacteriol, 177, pp. 586-595
  • Durmaz, E., Klaenhammer, T.R., A starter culture rotation strategy incorporating paired restriction/ modification and abortive infection bacteriophage defenses in a single Lactococcus lactis strain (1995) Appl Environ Microbiol, 61, pp. 1266-1273
  • Durmaz, E., Madsen, S.M., Israelsen, H., Klaenhammer, T.R., Lactococcus lactis lytic bacteriophages of the P335 group are inhibited by overexpression of a truncated CI repressor (2002) J Bacteriol, 184, pp. 6532-6544
  • Ellis, H.M., Yu, D., DiTizio, T., Court, D.L., High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides (2001) PNAS (USA), 98, pp. 6742-6746
  • Emond, E., Moineau, S., Bacteriophages in food fermentations. In (2007) Bacteriophages. Genetics and Molecular Biology, pp. 93-124. , ((eds) S. McGrath and D. van Sinderen) Cyster Academic Press, Norfolk, United Kingdom
  • Esposito, D., Scocca, J.J., The integrase family of tyrosine recombinases: evolution of a conserved active site domain (1997) Nucleic Acids Res, 25, pp. 3605-3614
  • Fabre, L., Zhang, J., Guigon, G., CRISPR typing and subtyping for improved laboratory surveillance of Salmonella infections (2012) PloS One, 7
  • Feher, T., Karcagi, I., Blattner, F.R., Posfai, G., Bacteriophage recombineering in the lytic state using the lambda red recombinases (2012) Microb Biotechnol, 5, pp. 466-476
  • Forde, A., Fitzgerald, G.F., Analysis of exopolysaccharide (EPS) production mediated by the bacteriophage adsorption blocking plasmid, pCI658, isolated from Lactococcus lactis ssp. cremoris HO2 (1999) Int Dairy J, 9, pp. 465-472
  • Forde, A., Fitzgerald, G.F., Bacteriophage defence systems in lactic acid bacteria (1999) Antonie van Leeuwenhoek, 76, pp. 89-113
  • García, P., Ladero, V., Suarez, J.E., Analysis of the morphogenetic cluster and genome of the temperate Lactobacillus casei bacteriophage A2 (2003) Arch Virol, 148, pp. 1051-1070
  • García, P., Rodriguez, L., Rodriguez, A., Martinez, B., Food biopreservation: promising strategies using bac- teriocins, bacteriophages and endolysins (2010) Trends Food Sci Technol, 21, pp. 373-382
  • Garneau, J.E., Dupuis, M.E., Villion, M., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA (2010) Nature, 468, pp. 67-71
  • Garneau, J.E., Moineau, S., Bacteriophages of lactic acid bacteria and their impact on milk fermentations (2011) Microb Cell Fact, 10 (1), p. S20. , (Su)
  • Geller, B.L., Ivey, R.G., Trempy, J.E., Hettinger-Smith, B., Cloning of a chromosomal gene required for phage infection of Lactococcus lactis subsp. lactis C2 (1993) J Bacteriol, 175, pp. 5510-5519
  • Gottesman, S., Microbiology: Dicing defence in bacteria (2011) Nature, 471, pp. 588-589
  • Greer, G.G., Dilts, B.D., Ackermann, H.W., Characterization of a Leuconostoc gelidum bacteriophage from pork (2007) Int J Food Microbiol, 114, pp. 370-375
  • Grissa, I., Vergnaud, G., Pourcel, C., The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats (2007) BMC Bioinformatics, 8 (172)
  • Groenen, P.M., Bunschoten, A.E., van Soolingen, D., van Embden, J.D., Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method (1993) Mol Microbiol, 10, pp. 1057-1065
  • Groth, A.C., Calos, M.P., Phage integrases: biology and applications (2004) J Mol Biol, 335, pp. 667-678
  • Groth, A.C., Olivares, E.C., Thyagarajan, B., Calos, M.P., A phage integrase directs efficient site-specific integration in human cells (2000) PNAS (USA), 97, pp. 5995-6000
  • Guinane, C.M., Kent, R.M., Norberg, S., Host specific diversity in Lactobacillus johnsonii as evidenced by a major chromosomal inversion and phage resistance mechanisms (2011) PloS One, 6
  • Hollis, R.P., Stoll, S.M., Sclimenti, C.R., Phage integrases for the construction and manipulation of transgenic mammals (2003) Reprod Biool Endocrinol, 1 (79)
  • Horvath, P., Coute-Monvoisin, A.-C., Romero, D.A., Comparative analysis of CRISPR loci in lactic acid bacteria genomes (2009) Int J Food Microbiol, 131, pp. 62-70
  • Horvath, P., Romero, D.A., Coute-Monvoisin, A.C., Diversity, activity, and evolution of CRISPR loci in (2008) Streptococcus thermophilus. J Bacteriol, 190, pp. 1401-1412
  • Huang, J., Ghosh, P., Hatfull, G.F., Hong, Y., Successive and targeted DNA integrations in the Drosophila genome by Bxb1 and phiC31 integrases (2011) Genetics, 189, pp. 391-395
  • Ishino, Y., Shinagawa, H., Makino, K., Nucleotide sequence of the (1987) iap J Bacteriol, 169, p. 5429. , generesponsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
  • Jansen, R., Embden, J.D., Gaastra, W., Schouls, L.M., Identification of genes that are associated with DNA repeats in prokaryotes (2002) Mol Microbiol, 43, pp. 1565-1575
  • Jiang, W., Bikard, D., Cox, D., RNA-guided editing of bacterial genomes using CRISPR-Cas systems (2013) Nat Biotechnol, 31, pp. 233-239
  • Jinek, M., Chylinski, K., Fonfara, I., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity (2012) Science, 337, pp. 816-821
  • Katashkina, J.I., Hara, Y., Golubeva, L.I., Use of the lambda Red-recombineering method for genetic engineering of Pantoea ananatis (2009) BMC Mol Biol, 10, p. 34. , BMC Mol Biol
  • Kim, Y.G., Cha, J., Chandrasegaran, S., Hybrid restriction enzymes: zinc finger fusions to FokI cleavage domain (1996) PNAS (USA), 93, pp. 1156-1160
  • Kiro, R., Shitrit, D., Qimron, U., Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system (2014) RNA Biology, 11, pp. 42-44
  • Kulkarni, S.K., Stahl, F.W., Interaction between the sbcC gene of Escherichia coli and the gam gene of phage lambda (1989) Genetics, 123, pp. 249-253
  • Labrie, S.J., Samson, J.E., Moineau, S., Bacteriophage resistance mechanisms (2010) Nat Rev Microbiol, 8, pp. 317-327
  • Le Fleche, P., Hauck, Y., Onteniente, L., A tandem repeats database for bacterial genomes: application to the genotyping of (2001) Yersinia pestis Bacillus anthracis. BMC Microbiol, 1, p. 2
  • Lillehaug, D., Nes, I.F., Birkeland, N.K., A highly efficient and stable system for site-specific integration of genes and plasmids into the phage phiLC3 attachment site (attB) of the Lactococcus lactis chromosome (1997) Gene, 188, pp. 129-136
  • Lin, C.F., Lo, T.C., Kuo, Y.C., Lin, T.H., Stable integration and expression of heterologous genes in several lactobacilli using an integration vector constructed from the integrase and attP sequences of phage phiAT3 isolated from Lactobacillus casei ATCC 393 (2013) Appl Microbiol Biotechnol, 97, pp. 3499-3507
  • Lo, T.C., Shih, T.C., Lin, C.F., Complete genomic sequence of the temperate bacteriophage phiAT3 isolated from Lactobacillus casei ATCC 393 (2005) Virology, 339, pp. 42-55
  • Mahony, J., Ainsworth, S., Stockdale, S., van Sinderen, D., Phages of lactic acid bacteria: the role of genetics in understanding phage-host interactions and their co-evolutionary processes (2012) Virology, 434, pp. 143-150
  • Mahony, J., McGrath, S., Fitzgerald, G.F., van Sinderen, D., Identification and characterization of lactococcal- prophage-carried superinfection exclusion genes (2008) Appl Environ Microbiol, 74, pp. 6206-6215
  • Mahony, J., van Sinderen, D., Current taxonomy of phages infecting lactic acid bacteria (2014) Front Microbiol, 5, p. 7
  • Makarova, K.S., Haft, D.H., Barrangou, R., Evolution and classification of the CRISPR-Cas systems (2011) Nat Rev Microbiol, 9, pp. 467-477
  • Mali, P., Yang, L., Esvelt, K.M., RNA-guided human genome engineering via Cas9 (2013) Science, 339, pp. 823-826
  • Maresca, M., Erler, A., Fu, J., Single-stranded heteroduplex intermediates in lambda Red homologous recombination (2010) BMC Mol Biol, 11, p. 54
  • Marinelli, L.J., Hatfull, G.F., Piuri, M., Recombineering: A powerful tool for modification of bacteriophage genomes (2012) Bacteriophage, 2, pp. 5-14
  • Marinelli, L.J., Piuri, M., Swigonova, Z., BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes (2008) PloS One, 3, p. e3957
  • Marraffini, L.A., Sontheimer, E.J., CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea (2010) Nat Rev Genetics, 11, pp. 181-190
  • Martín, M.C., Alonso, J.C., Suarez, J.E., Alvarez, M.A., Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination (2000) Appl Environ Microbiol, 66, pp. 2599-2604
  • Martel, B., Moineau, S., CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages (2014) Nucleic Acids Res, 42, pp. 9504-9513
  • Mills, S., Ross, R.P., Neve, H., Coffey, A., Bacteriophage and anti-phage mechanisms in lactic acid bacteria (2012) Lactic Acid Bacteria. Microbiological and Functional Aspects, pp. 165-186. , (ed. S. Lahtinen, A. Ouwehand, S. Salminen, and A. von Wright), 4th edition, CRC Press, London, United Kingdom
  • Mojica, F.J., Diez-Villasenor, C., Garcia-Martinez, J., Soria, E., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements (2005) J Mol Evol, 60, pp. 174-182
  • Mosberg, J.A., Lajoie, M.J., Church, G.M., Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate (2010) Genetics, 186, pp. 791-799
  • Moscoso, M., Suarez, J.E., Characterization of the DNA replication module of bacteriophage A2 and use of its origin of replication as a defense against infection during milk fermentation by Lactobacillus casei (2000) Virology, 273, pp. 101-111
  • Moscou, M.J., Bogdanove, A.J., A simple cipher governs DNA recognition by TAL effectors (2009) Science J Mol Biol, 326, p. 1501
  • Muyrers, J.P., Zhang, Y., Testa, G., Stewart, A.F., Rapid modification of bacterial artificial chromosomes by ET-recombination (1999) Nucleic Acids Res, 27, pp. 1555-1557
  • Nkrumah, L.J., Muhle, R.A., Moura, P.A., Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase (2006) Nat Methods, 3, pp. 615-621
  • Olivares, E.C., Hollis, R.P., Calos, M.P., Phage R4 integrase mediates site-specific integration in human cells (2001) Gene, 278, pp. 167-176
  • Olivares, E.C., Hollis, R.P., Chalberg, T.W., Site-specific genomic integration produces therapeutic Factor IX levels in mice (2002) Nat Biotechnol, 20, pp. 1124-1128
  • Oppenheim, A.B., Rattray, A.J., Bubunenko, M., In vivo recombineering of bacteriophage lambda by PCR fragments and single-strand oligonucleotides (2004) Virology, 319, pp. 185-189
  • Payne, K., Sun, Q., Sacchettini, J., Hatfull, G.F., Mycobacteriophage lysin B is a novel mycolylarabinoga- lactan esterase (2009) Mol Microbiol, 73, pp. 367-381
  • Petersen, K.V., Martinussen, J., Jensen, P.R., Solem, C., Repetitive, marker-free, site-specific integration as a novel tool for multiple chromosomal integration of DNA (2013) Appl Environ Microbiol, 79, pp. 3563-3569
  • Piuri, M., Hatfull, G.F., A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells (2006) Mol Microbiol, 62, pp. 1569-1585
  • Pontes, M.H., Dale, C., Lambda red-mediated genetic modification of the insect endosymbiont Sodalis glossinidius (2011) Appl Environ Microbiol, 77, pp. 1918-1920
  • Pourcel, C., Salvignol, G., Vergnaud, G., CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies (2005) Microbiology, 151, pp. 653-663
  • Proux, C., van Sinderen, D., Suarez, J., The dilemma of phage taxonomy illustrated by comparative genomics of Sfi21-like Siphoviridae in lactic acid bacteria (2002) J Bacteriol, 184, pp. 6026-6036
  • Raisanen, L., Draing, C., Pfitzenmaier, M., Molecular interaction between lipoteichoic acids and Lactobacillus delbrueckii phages depends on D-alanyl and alpha-glucose substitution of poly(glycerophosphate) backbones (2007) J Bacteriol, 189, pp. 4135-4140
  • Ranallo, R.T., Barnoy, S., Thakkar, S., Developing live Shigella vaccines using lambda Red recombineering (2006) FEMS Immunol Med Microbiol, 47, pp. 462-469
  • Raya, R.R., Fremaux, C., De Antoni, G.L., Klaenhammer, T.R., Site-specific integration of the temperate bacteriophage phi adh into the Lactobacillus gasseri chromosome and molecular characterization of the phage (attP) and bacterial (attB) attachment sites (1992) J Bacteriol, 174, pp. 5584-5592
  • Raya, R.R., Kleeman, E.G., Luchansky, J.B., Klaenhammer, T.R., Characterization of the temperate bacteriophage phi-adh and plasmid transduction in Lactobacillus acidophilus ADH (1989) Appl Environ Microbiol, 55, pp. 2206-2213
  • Rebar, E.J., Pabo, C.O., Zinc finger phage: affinity selection of fingers with new DNA-binding specificities (1994) Science, 263, pp. 671-673
  • Richter, C., Chang, J.T., Fineran, P.C., Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated (Cas) systems (2012) Viruses, 4, pp. 2291-2311
  • Roces, C., Courtin, P., Kulakauskas, S., Isolation of Lactococcus lactis mutants simultaneously resistant to the cell wall-active bacteriocin Lcn972, lysozyme, nisin, and bacteriophage c2 (2012) Appl Environ Microbiol, 78, pp. 4157-4163
  • Samson, J., Moineau, S., Bacteriophages in food fermentations: new frontiers in a continuous arms race (2013) Ann
  • Technol, R.F.S., Rev Food Sci Technol, pp. 347-368
  • Samson, J., Magadan, A.H., Sabri, M., Moineau, S., Revenge of the phages: defeating bacterial defences (2013); Microbiol, N.R., Nat Rev Microbiol, pp. 675-687
  • Samson, J.E., Spinelli, S., Cambillau, C., Moineau, S., Structure and activity of AbiQ, a lactococcal endoribo- nuclease belonging to the type III toxin-antitoxin system (2013) Mol Microbiol, 87, pp. 756-768
  • Sander, J.D., Joung, J.K., CRISPR-Cas systems for editing, regulating and targeting genomes (2014) Nat Biotechnol, 32, pp. 347-355
  • Sarov, M., Schneider, S., Pozniakovski, A., A recombineering pipeline for functional genomics applied to Caenorhabditis elegans (2006) Nat Methods, 3, pp. 839-844
  • Sawitzke, J.A., Costantino, N., Li, X.T., Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering (2011) J Mol Biol, 407, pp. 45-59
  • Schouls, L.M., Reulen, S., Duim, B., Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination (2003) J Clin Microbiol, 41, pp. 15-26
  • Shariat, N., Dudley, E.G., CRISPRs: molecular signatures used for pathogen subtyping (2014) Appl Environ Microbiol, 80, pp. 430-439
  • Shimizu-Kadota, M., Kiwaki, M., Hirokawa, H., Tsuchida, N., ISL1: a new transposable element in Lactobacillus casei (1985) Mol Gen Genet, 200, pp. 193-198
  • Shimizu-Kadota, M., Kiwaki, M., Sawaki, S., Insertion of bacteriophage phiFSW into the chromosome of Lactobacillus casei strain Shirota (S-1): characterization of the attachment sites and the integrase gene (2000) Gene, 249, pp. 127-134
  • Shimizu-Kadota, M., Sakurai, T., Tsuchida, N., Prophage origin of a virulent phage appearing on fermentations of Lactobacillus casei S-1 (1983) Appl Environ Microbiol, 45, pp. 669-674
  • Smith, M.C., Thorpe, H.M., Diversity in the serine recombinases (2002) Mol Microbiol, 44, pp. 299-307
  • Spinelli, S., Veesler, D., Bebeacua, C., Cambillau, C., Structures and host-adhesion mechanisms of lactococcal siphophages (2014) Front Microbiol, 5, p. 3
  • Stockdale, S.R., Mahony, J., Courtin, P., The lactococcal phages Tuc2009 and TP901-1 incorporate two alternate forms of their tail fiber into their virions for infection specialization (2013) J Biol Chem, 288, pp. 5581-5590
  • Stoll, S.M., Ginsburg, D.S., Calos, M.P., Phage TP901-1 site-specific integrase functions in human cells (2002) J Bacteriol, 184, pp. 3657-3663
  • Streicher, E.M., Victor, T.C., van der Spuy, G., Spoligotype signatures in the Mycobacterium tuberculosis complex (2007) J Clin Microbiol, 45, pp. 237-240
  • Sturino, J.M., Klaenhammer, T.R., Bacteriophage defense systems and strategies for lactic acid bacteria (2004) Adv Appl Microbiol, 56, pp. 331-378
  • Sturino, J.M., Klaenhammer, T.R., Engineered bacteriophage-defence systems in bioprocessing (2006) Nat Rev Microbiol, 4, pp. 395-404
  • Sturino, J.M., Klaenhammer, T.R., Inhibition of bacteriophage replication in Streptococcus thermophilus by subunit poisoning of primase (2007) Microbiology, 153, pp. 3295-3302
  • Sulakvelidze, A., Alavidze, Z., Morris, J.G., Bacteriophage therapy (2001) Antimicrob Agents Chemother, 45, pp. 649-659
  • Swaminathan, S., Ellis, H.M., Waters, L.S., Rapid engineering of bacterial artificial chromosomes using oligonucleotides (2001) Genesis, 29, pp. 14-21
  • Swingle, B., Bao, Z., Markel, E., Recombineering using RecTE from Pseudomonas syringae (2010) Appl Environ Microbiol, 76, pp. 4960-4968. , Appl Environ Microbiol
  • Swingle, B., Markel, E., Costantino, N., Oligonucleotide recombination in Gram-negative bacteria (2010) Mol Microbiol, 75, pp. 138-148
  • Terns, M.P., Terns, R.M., CRISPR-based adaptive immune systems (2011) Curr Opin Microbiol, 14, pp. 321-327
  • Thyagarajan, B., Olivares, E.C., Hollis, R.P., Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase (2001) Mol Cel Biol, 21, pp. 3926-3934
  • Tyson, G.W., Banfield, J.F., Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses (2008) Environ Microbiol, 10, pp. 200-207
  • Valyasevi, R., Sandine, W.E., Geller, B.L., A membrane protein is required for bacteriophage c2 infection of (1991) Lactococcus lactis lactis J Bacteriol, 173, pp. 6095-6100. , subsp. C
  • van de Guchte, M., Daly, C., Fitzgerald, G.F., Arendt, E.K., Identification of int and attP on the genome of lactococcal bacteriophage Tuc2009 and their use for site-specific plasmid integration in the chromosome of Tuc2009- resistant Lactococcus lactis MG1363 (1994) Appl Environ Microbiol, 60, pp. 2324-2329
  • van Kessel, J.C., Hatfull, G.F., Recombineering in Mycobacterium tuberculosis (2007) Nat Methods, 4, pp. 147-152. , Nat Methods
  • van Kessel, J.C., Hatfull, G.F., Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets (2008) Mol Microbiol, 67, pp. 1094-1107
  • van Kessel, J.C., Hatfull, G.F., Mycobacterial recombineering (2008) Methods Mol Biol, 435, pp. 203-215
  • van Pijkeren, J.P., Britton, R.A., High efficiency recombineering in lactic acid bacteria (2012) Nucleic Acids Res, 40, p. e76
  • Van Pijkeren, J.P., Neoh, K.M., Sirias, D., Exploring optimization parameters to increase ssDNA recom- bineering in Lactococcus lactis and Lactobacillus reuteri (2012) Bioengineered, 3, pp. 209-217
  • Walker, S.A., Klaenhammer, T.R., An explosive antisense RNA strategy for inhibition of a lactococcal bacteriophage (2000) App Environ Microbiol, 66, pp. 310-319
  • Westra, E.R., Swarts, D.C., Staals, R.H., The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity (2012) Ann Rev Genetics, 46, pp. 311-339
  • Whitehead, H.R., Cox, G.A., The occurrence of bacteriophages in starter cultures of lactic streptococci (1935) N Z J Dairy Sci Technol, 16, pp. 319-320
  • Wiedenheft, B., Sternberg, S.H., Doudna, J.A., RNA-guided genetic silencing systems in bacteria and archaea (2012) Nature, 482, pp. 331-338
  • Yamaguchi, S., Kazuki, Y., Nakayama, Y., A method for producing transgenic cells using a multi-integrase system on a human artificial chromosome vector (2011) PloS One, 6, p. e17267
  • Yu, D., Ellis, H.M., Lee, E.C., An efficient recombination system for chromosome engineering in Escherichia coli (2000) PNAS (USA), 97, pp. 5978-5983
  • Zhang, Y., Muyrers, J.P., Rientjes, J., Stewart, A.F., Phage annealing proteins promote oligonucleotide- directed mutagenesis in Escherichia coli and mouse ES cells (2003) BMC Mol Biol, 4, p. 1

Citas:

---------- APA ----------
Martínez, B., García, P., Gonzalez, A.R., Piuri, M. & Raya, R.R. (2015) . Bacteriophages of Lactic Acid Bacteria and Biotechnological Tools. Biotechnology of Lactic Acid Bacteria: Novel Applications: Second Edition, 100-119.
http://dx.doi.org/10.1002/9781118868386.ch6
---------- CHICAGO ----------
Martínez, B., García, P., Gonzalez, A.R., Piuri, M., Raya, R.R. "Bacteriophages of Lactic Acid Bacteria and Biotechnological Tools" . Biotechnology of Lactic Acid Bacteria: Novel Applications: Second Edition (2015) : 100-119.
http://dx.doi.org/10.1002/9781118868386.ch6
---------- MLA ----------
Martínez, B., García, P., Gonzalez, A.R., Piuri, M., Raya, R.R. "Bacteriophages of Lactic Acid Bacteria and Biotechnological Tools" . Biotechnology of Lactic Acid Bacteria: Novel Applications: Second Edition, 2015, pp. 100-119.
http://dx.doi.org/10.1002/9781118868386.ch6
---------- VANCOUVER ----------
Martínez, B., García, P., Gonzalez, A.R., Piuri, M., Raya, R.R. Bacteriophages of Lactic Acid Bacteria and Biotechnological Tools. Biotechnol. of Lact. Acid Bact.: Novel Appl.: Second Ed. 2015:100-119.
http://dx.doi.org/10.1002/9781118868386.ch6