Parte de libro

Doctorovich, F.; Bikiel, D.E.; Pellegrino, J.; Suárez, S.A.; Martí, M.A. "How to Find an HNO Needle in a (Bio)-Chemical Haystack" (2014) Progress in Inorganic Chemistry. 58:145-184
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

Azanone (also called nitroxyl or simply HNO) is an intrinsic elusive molecule, with a proven history of chemically and biologically relevant reactivity. The chapter describes many HNO donors, potential HNO production reactions, and azanone potential biological effects. Azanone donors are based mainly on hydroxylamine and its derivatives, NONOates, and C-nitroso compounds. HNO releasing agents have interesting perspectives as potential therapeutic compounds. However, more work, where HNO detections methods are critical, is needed to understand the chemical mechanisms underlying the observed physiological effects. Quantification of HNO is challenging because it is a very reactive species with a high rate for dimerization. Two different methodologies, trapping and real-time detection methods, have been explored in order to quantify HNO. The chapter reviews the recent advances in both types of azanone detection methods. © 2014 by John Wiley & Sons, Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:How to Find an HNO Needle in a (Bio)-Chemical Haystack
Autor:Doctorovich, F.; Bikiel, D.E.; Pellegrino, J.; Suárez, S.A.; Martí, M.A.
Filiación:INQUIMAE-CONICET, DQIAQF, Universidad de Buenos Aires, Argentina
Palabras clave:Azanone; Biochemical reactions; Chemical reactions; HNO releasing agents; Real-time detection method; Therapeutic compounds; Trapping method; Amines; Chemical reactions; Reaction kinetics; Signal detection; Azanone; Biochemical reactions; Real-time detection; Releasing agent; Therapeutic compounds; Trapping methods; Chemical detection
Año:2014
Volumen:58
Página de inicio:145
Página de fin:184
DOI: http://dx.doi.org/10.1002/9781118792797.ch02
Título revista:Progress in Inorganic Chemistry
Título revista abreviado:Prog. in Inorg. Chem.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97811187_v58_n_p145_Doctorovich

Referencias:

  • Doctorovich, F., Bikiel, D., Pellegrino, J., Suárez, S.A., Larsen, A., Martí, M.A., (2011) Coord. Chem. Rev, 255, p. 2764
  • Bartberger, M.D., Fukuto, J.M., Houk, K.N., (2001) Proc. Natl. Acad. Sci. USA, 98, p. 2194
  • Ford, P.C., (2010) Inorg. Chem, 49, p. 6226
  • Hoshino, M., Laverman, L., Ford, P.C., (1999) Coord. Chem. Rev, 187, p. 75
  • Suárez, S.A., Martí, M.A., De Biase, P.M., Estrin, D.A., Bari, S.E., Doctorovich, F., (2007) Polyhedron, 26, p. 4673
  • Martí, M.A., Bari, S.E., Estrin, D.A., Doctorovich, F., (2005) J. Am. Chem. Soc, 127, p. 4680
  • Boron, I., Suárez, S.A., Doctorovich, F., Martí, M.A., Bari, S.E., (2011) J. Inorg. Biochem, 105, p. 1044
  • Pickles, J.B., Williams, D.A., (1978) Nature (London), 271, p. 335
  • Switzer, C.H., Miller, T.W., Farmer, P.J., Fukuto, J.M., (2013) J. Inorg. Biochem, 118, p. 128
  • Benderskii, V.A., Krivenko, A.G., Ponomarev, E.A., (1989) Sov. Electrochem. Engl. Tr, 25, p. 154
  • DuMond, J., King, S., (2011) Antioxid. Redox Signal, 14, p. 1637
  • Zeng, B.-B., Huang, J., Wright, M.W., King, S.B., (2004) Bioorg. Med. Chem. Lett, 14, p. 5565
  • Sirsalmath, K., a Suárez, S., Bikiel, D.E., Doctorovich, F., (2013) J. Inorg. Biochem, 118, p. 134
  • Guthrie, D.A., Kim, N.Y., Siegler, M.A., Moore, C.D., Toscano, J.P., (2012) J. Am. Chem. Soc, 134, p. 1962
  • Thomas, D., Miranda, K., Graham, M., Espey, D.C., Jourd'heuil, D., Paolocci, N., Hewett, S.J., Wink, D.A., (2002) Meth. Enzymol, 359, p. 84
  • Salmon, D.J., Torres de Holding, C.L., Thomas, L., Peterson, K.V., Goodman, G.P., Saavedra, J.E., Srinivasan, A., Miranda, K.M., (2011) Inorg Chem, 50, p. 3262
  • Andrei, D., Salmon, D.J., Donzelli, S., Wahab, A., Klose, J.R., Citro, M.L., Saavedra, J.E., Keefer, L.K., (2010) J. Am. Chem. Soc, 132, p. 16526
  • Sha, X., Isbell, T.S., Patel, R.P., Day, C.S., King, S.B., (2006) J. Am. Chem. Soc, 128, p. 9687
  • Dumond, J.F., Wright, M.W., King, S.B., (2013) J. Inorg. Biochem, 118, p. 140
  • Adachi, Y., Nakagawa, H., Matsuo, K., Suzuki, T., Miyata, N., (2008) Chem. Commun, p. 5149
  • Matsuo, K., Nakagawa, H., Adachi, Y., Kameda, E., Tsumoto, H., Suzuki, T., Miyata, N., (2010) Chem. Commun, 46, p. 3788
  • Nakagawa, H., (2013) J. Inorg. Biochem, 118, p. 187
  • Luňák, S., Vepřek-šiška, J., (1974) Collect. Czech. Chem. Commun, 39, p. 391
  • Nast, R., Foppl, I., (1950) Z. Anorg. Allg. Chem, 263, p. 310
  • Anderson, J.H., (1964) Analyst (London), 89, p. 357
  • Anderson, J.H., (1966) Analyst (London), 91, p. 532
  • Alluisetti, G.E., Almaraz, A.E., Amorebieta, V.T., Doctorovich, F., Olabe, J.A., (2004) J. Am. Chem. Soc, 126, p. 13432
  • Larsen, J.W., Jandzinski, J., Sidovar, M., Stuart, J.L., (2001) Carbon NY, 39, p. 473
  • Cooper, J.N., Chilton, J.E., Powell, R.E., (1970) Inorg. Chem, 9, p. 2303
  • Bonner, F.T., Dzelzkalns, L.S., Bonucci, J.A., (1978) Inorg. Chem, 17, p. 2487
  • Wang, N.Y., Bonner, F.T., (1986) Inorg. Chem, 25, p. 1858
  • Wang, N.Y., Bonner, F.T., (1986) Inorg. Chem, 25, p. 1863
  • Lymar, S.V., Shafirovich, V., Poskrebyshev, G.A., (2005) Inorg Chem, 44, p. 5212
  • Freese, E., Freese, E.B., Rutherford, E., (1965) Biochemistry, p. 4
  • Erlenmeyer, H., Flierl, C., Sigela, H., (1969) J. Am. Chem. Soc, 91, p. 1065
  • Donzelli, S., Espey, M.G., Flores-santana, W., Switzer, C.H., Yeh, G.C., Huang, J., Stuehr, D.J., Graham, M., (2008) Free Radic. Bio. Med, 45, p. 578
  • Adak, S., Wang, Q., Stuehr, D.J., (2000) J. Biol. Chem, 275, p. 33554
  • Woodward, J.J., Nejatyjahromy, Y., Britt, R.D., Marletta, M.A., (2010) J. Am. Chem. Soc, 132, p. 5105
  • Hollocher, T.C., (1983) Antonie Van Leeuwenhoek, 48, p. 531
  • Ackermann, M.N., Powell, R.E., (1966) Inorg. Chem, 5, p. 1334
  • Shafirovich, V., Lymar, S.V., (2002) Proc. Natl. Acad. Sci. USA, 99, p. 7340
  • Bonner, F.T., Pearsall, K.A., (1982) Inorg. Chem, 21, p. 1973
  • Bonner, F.T., Pearsall, K.A., (1982) Inorg. Chem, 21, p. 1978
  • Bell, K.E., Kelly, H.C., (1996) Inorg Chem, 35, p. 7225
  • Strausz, O.P., Gunning, H.E., (1964) Trans. Faraday Soc, 60, p. 347
  • Kohout, F.C., Lampe, F.W., (1965) J. Am. Chem. Soc, 87, p. 5795
  • Lambert, R.M., (1966) Chem. Commun. (London), p. 850
  • Akhtar, M.J., Bonner, F.T., Hughes, M.N., (1985) Inorg. Chem, 24, p. 1934
  • Pryor, W.A., Church, D.F., Govindan, C.K., Crank, G., (1982) J. Org. Chem, 47, p. 156
  • Brown, H.W., Pimentel, G.C., (1958) J. Chem. Phys, 29, p. 883
  • Sausa, R.C., Singh, G., Lemire, G.W., Anderson, W.R., (1997) Flame Structure Studies of Neat and NH3-Doped Low-Pressure H2/N20/Ar Flames by Molecular Beam Mass Spectroscopy, , Weapons and Materials Research Directorate, ARL, July
  • Quee, M.J.Y., Thynne, J.C.J., (1968) Trans. Faraday Soc, 64, p. 1296
  • Hackman, E.E., Hesser, H.H., Beachell, H.C., (1972) J. Phys. Chem, 76, p. 3545
  • Kirsch, M., Büscher, A.-M., Aker, S., Schulz, R., de Groot, H., (2009) Org. Biomol. Chem, 7, p. 1954
  • Filipovic, M.R., Miljkovic, J.L., Nauser, T., Royzen, M., Klos, K., Shubina, T., Koppenol, W.H., Ivanović-burmazović, I., (2012) J. Am. Chem. Soc, 134, p. 12016
  • Rosenthal, J., Lippard, S.J., (2010) J. Am. Chem. Soc, 132, p. 5536
  • Shen, X., Pattillo, C.B., Pardue, S., Bir, S.C., Wang, R., Kevil, C.G., (2011) Free Radic. Biol. Med, 50, p. 1021
  • Einsle, O., Messerschmidt, A., Huber, R., Kroneck, P.M.H., Neese, F., (2002) J. Am. Chem. Soc, 124, p. 11737
  • Schmidt, H.H.H.W., Hofmann, H., Schindler, U., Shutenko, Z.S., Cunningham, D.D., Feelisch, M., (1996) Proc. Natl. Acad. Sci. USA, 93, p. 14492
  • Stoll, S., NejatyJahromy, Y., Woodward, J.J., Ozarowski, A., Marletta, M.A., Britt, R.D., (2010) J. Am. Chem. Soc, 132, p. 11812
  • Reisz, J.A., Zink, C.N., King, S.B., (2011) J. Am. Chem. Soc, 133, p. 11675
  • Lin, R., Farmer, P.J., (2000) J. Am. Chem. Soc, 122, p. 2393
  • Pellegrino, J., Bari, S.E., Bikiel, D.E., Doctorovich, F., (2010) J. Am. Chem. Soc, 132, p. 989
  • Fukuto, J.M., Bartberger, M.D., Dutton, A.S., Paolocci, N., Wink, D.A., Houk, K.N., (2005) Chem. Res. Toxicol, 18, p. 790
  • Ma, X.L., Gao, F., Liu, G.L., Lopez, B.L., Christopher, T.A., Fukuto, J.M., Wink, D.A., Feelisch, M., (1999) Proc. Natl. Acad. Sci. USA, 96, p. 14617
  • Ma, X.L., Weyrich, A.S., Lefer, D.J., Lefer, A.M., (1993) Circ. Res, 72, p. 403
  • Suárez, S.A., Fonticelli, M.H., Rubert, A.A., de La Llave, E., Scherlis, D., Salvarezza, R.C., Martí, M.A., Doctorovich, F., (2010) Inorg Chem, 49, p. 6955
  • Suárez, S.A., Bikiel, D.E., Wetzler, D.E., Martí, M.A., Doctorovich, F., (2013) Anal. Chem., 85, p. 10262
  • Dobmeier, K.P., Riccio, D.A., Schoenfisch, M.H., (2008) Anal. Chem, 80, p. 1247
  • Shoeman, D.W., Nagasawa, H.T., (1998) Nitric Oxide, 2, p. 66
  • Doyle, M.P., Mahapatro, S.N., Broene, R.D., Guy, J.K., (1988) J. Am. Chem. Soc, 110, p. 593
  • Liochev, S.I., Fridovich, I., (2003) Free Radic. Bio. Med, 34, p. 1399
  • Wong, P., Hyun, J., Fukuto, J., (1998) Biochemistry, 37, p. 5362
  • Donzelli, S., Espey, M.G., Thomas, D.D., Mancardi, D., Tocchetti, C.G., Ridnour, L.A., Paolocci, N., Wink, D.A., (2006) Free Radic. Bio. Med, 40, p. 1056
  • Soellner, M.B., Nilsson, B.L., Raines, R.T., (2006) J. Am. Chem. Soc, 128, p. 8820
  • Lim, M.D., Lorkovic, I.M., Ford, P.C., (2002) Inorg. Chem, 41, p. 1026
  • Xia, Y., Cardounel, A., Vanin, A.F., Zweier, J.L., (2000) Free Radic. Bio. Med, 29, p. 793
  • Komarov, A.M., Wink, D.A., Feelisch, M., Schmidt, H.H.H., (2000) Free Radic. Bio. Med, 28, p. 739
  • Samuni, U., Samuni, Y., Goldstein, S., (2010) J. Am. Chem. Soc, 132, p. 8428
  • Bobko, A., Ivanov, A., Khramtsov, V., (2013) Free Radic. Res, 47, p. 74
  • Cline, M.R., Tu, C., Silverman, D.N., Toscano, J.P., (2011) Free Radic. Bio. Med, 50, p. 1274
  • Cline, M.R., Chavez, T.A., Toscano, J.P., (2013) J. Inorg. Biochem, 118, p. 148
  • Tennyson, A.G., Do, L., Smith, R.C., Lippard, S.J., (2007) Nitric Oxide, 26, p. 4625
  • Zhou, Y., Liu, K., Li, J.-Y., Fang, Y., Zhao, T.-C., Yao, C., (2011) Org. Lett, 13, p. 2357
  • Cline, M.R., Toscano, J.P., (2011) J. Phys. Org. Chem, 24, p. 993
  • Miranda, K.M., Paolocci, N., Katori, T., Thomas, D.D., Ford, E., Bartberger, M.D., Espey, M.G., Wink, D.A., (2003) Proc. Natl. Acad. Sci. USA, 100, p. 9196
  • Davies, I.R., Zhang, X., (2008) Meth. Enzymol, 436, p. 63
  • Shin, J.H., Schoenfisch, M.H., (2006) Analyst (London), 131, p. 609
  • Vitecek, J., Petrlova, J., Petrek, J., Adam, V., Potesil, D., Havel, L., Mikelova, R., Kizek, R., (2006) Electrochim. Acta, 51, p. 5087
  • Kudo, S., Bourassa, J.L., Boggs, S.E., Sato, Y., Ford, P.C., (1997) Anal. Biochem, 247, p. 193
  • Boo, Y.C., Tressel, S.L., Jo, H., (2007) Nitric Oxide, 16, p. 306
  • Richter-addo, G.B., Hodge, S.J., Yi, G.B., Khan, M.A., Ma, T., Van Caemelbecke, E., Guo, N., Kadish, K.M., (1996) Inorg. Chem, 35, p. 6530
  • Heinecke, J.L., Khin, C., Pereira, J.C.M., Suárez, S.A., Iretski, A.V., Doctorovich, F., Ford, P.C., (2013) J. Am. Chem. Soc, 135 (10), p. 4007
  • Whitten, D.G., Baker, E.W., Corwin, A.H., (1963) J. Org. Chem, 28, p. 2363

Citas:

---------- APA ----------
Doctorovich, F., Bikiel, D.E., Pellegrino, J., Suárez, S.A. & Martí, M.A. (2014) . How to Find an HNO Needle in a (Bio)-Chemical Haystack. Progress in Inorganic Chemistry, 58, 145-184.
http://dx.doi.org/10.1002/9781118792797.ch02
---------- CHICAGO ----------
Doctorovich, F., Bikiel, D.E., Pellegrino, J., Suárez, S.A., Martí, M.A. "How to Find an HNO Needle in a (Bio)-Chemical Haystack" . Progress in Inorganic Chemistry 58 (2014) : 145-184.
http://dx.doi.org/10.1002/9781118792797.ch02
---------- MLA ----------
Doctorovich, F., Bikiel, D.E., Pellegrino, J., Suárez, S.A., Martí, M.A. "How to Find an HNO Needle in a (Bio)-Chemical Haystack" . Progress in Inorganic Chemistry, vol. 58, 2014, pp. 145-184.
http://dx.doi.org/10.1002/9781118792797.ch02
---------- VANCOUVER ----------
Doctorovich, F., Bikiel, D.E., Pellegrino, J., Suárez, S.A., Martí, M.A. How to Find an HNO Needle in a (Bio)-Chemical Haystack. Prog. in Inorg. Chem. 2014;58:145-184.
http://dx.doi.org/10.1002/9781118792797.ch02