Parte de libro

Bartlett, P.N.; Toh, C.S.; Calvo, E.J.; Flexer, V. "Modelling Biosensor Responses" (2008) Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications:267-325
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Registro:

Documento: Parte de libro
Título:Modelling Biosensor Responses
Autor:Bartlett, P.N.; Toh, C.S.; Calvo, E.J.; Flexer, V.
Filiación:Department of Chemistry, University of Southampton, Southampton, SO17 1BJ, United Kingdom
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore
INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales and Universidad de Buenos Aires, Pabellón 2 Ciudad Universitaria, AR-1428 Buenos Aires, Argentina
Palabras clave:Crank-Nicholson method; Cyclic voltammetry and mediated homogeneous enzyme electrode; Glucose oxidase-ferrocene methanol system; Michaelis-Menten enzyme kinetics; Modelling biosensor responses; Modelling redox mediated enzyme electrodes; Numerical simulation methods; Polynomial curve fitting and orthogonal collocation method
Año:2008
Página de inicio:267
Página de fin:325
DOI: http://dx.doi.org/10.1002/9780470753842.ch8
Título revista:Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications
Título revista abreviado:Bioelectrochemistry: Fundamentals, Exp. Tech. and Appl.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97804708_v_n_p267_Bartlett

Referencias:

  • Michaelis, L., Menten, M.L., Die Kinetik der Invertinwirkung (1913) Biochem. Z., 49, pp. 333-369
  • Briggs, G.E., Haldane, J.B.S., A note on the kinetics of enzyme action (1925) Biochem. J., p. 338
  • Fersht, A., Structure, E., Mechanism, W.E., Freeman and Company (1977), New York; Dixon, M., Webb, E.C., Enzymes (1979), 3rd edn. Longman, London; Cornish-Bowden, A., Principles of Enzyme Kinetics (1976), Butterworths, London; Bard, A.J., Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications (2001), 2nd edn John Wiley&Sons Inc., New York; Albery, W.J., Bartlett, P.N., Amperometric enzyme electrodes 1. Theory (1985) J. Electroanal. Chem., 194, pp. 211-222
  • Albery, W.J., Bartlett, P.N., Craston, D.H., Amperometric enzyme electrodes. 2. Conducting salts as electrode materials for the oxidation of glucose oxidase (1985) J. Electroanal. Chem., 194, pp. 223-235
  • Martens, N., Hindle, A., Hall, E.A.H., An assessment of mediators as oxidants for glucose-oxidase in the presence of oxygen (1995) Biosens. Bioelectr., 10, pp. 393-403
  • Bacha, S., Bergel, A., Comtat, M., Transient-response of multilayer electroenzymatic biosensors (1995) Anal. Chem., 67, pp. 1669-1678
  • Schulmeister, T., Pfeiffer, D., Mathematical-modeling of amperometric enzyme electrodes with perforated membranes (1993) Biosens. & Bioelectr., 8, pp. 75-79
  • Rajagopalan, R., Aoki, A., Heller, A., Effect of quaternization of the glucose oxidase ?wiring? redox polymer on the maximum current densities of glucose electrodes (1996) J. Phys. Chem., 100, pp. 3719-3727
  • Surridge, N.A., Diebold, E.R., Chang, J., Neudeck, G.W., Electron-transport rayes in an enzyme electrode for glucose (1994) Diagnostic Biosensor Polymers ACS Symposium Series, 556, pp. 47-70
  • Bartlett, P.N., Pratt, K.F.E., Theoretical treatment of diffusion and kinetics in amperometric immobilized enzyme electrodes .1. redox mediator entrapped within the film (1995) J. Electroanal. Chem., 397, pp. 61-78
  • Niculescu, M., Nistor, C., Frebort, I., Redox hydrogelbased amperometric bienzyme electrodes for fish freshness monitoring (2000) Anal. Chem., 72, pp. 1591-1597
  • Linke, B., Kerner, W., Kiwit, M., Pishko, M., Heller, A., Amperometric biosensor for in vivo glucose sensing based on glucose-oxidase immobilized in a redox hydrogel (1994) Biosens. & Bioelectr., 9, pp. 151-158
  • Kong, J.L., Liu, H.Y., Deng, J.Q., Cyclic voltammetric response of tetrathiafulvalene glucose-oxidase modified electrode and results for digital-simulation (1995) Anal. Lett., 28, pp. 1339-1357
  • Sheppard, N.F., Mears, D.J., Guiseppi-Elie, A., Model of an immobilized enzyme conductimetric urea biosensor (1996) Biosens. & Bioelectr., 11, pp. 967-979
  • Bartlett, P.N., Ali, Z., Eastwick-Field, V., Electrochemical immobilization of enzymes . 4. Coimmobilization of glucose oxidase and ferro/ferricyanide in poly(N-methylpyrrole) films (1992) J. Chem. Soc., Faraday Trans., 88, pp. 2677-2683
  • Bartlett, P.N., Tebbutt, P., Tyrrell, C.H., Electrochemical immobilization of enzymes. 3. Immobilization of glucose oxidase in thin-films of electrochemically polymerized phenols (1992) Anal. Chem., 64, pp. 138-142
  • Somasundrum, M., Tongta, A., Tanticharoen, M., Kirtikara, K., A kinetic model for the reduction of enzymegenerated H2O2 at a metal-dispersed conducting polymer film (1997) J. Electroanal. Chem., 440, pp. 259-264
  • Gros, P., Bergel, A., Improved model of a polypyrrole glucose-oxidase modified electrode (1995) J. Electroanal. Chem., 386, pp. 65-73
  • Lyons, M.E.G., Lyons, C.H., Fitzgerald, C., Bartlett, P.N., Conducting-polymer-based electrochemical sensors -theoretical-analysis of the transient current response (1994) J. Electroanal. Chem., 365, pp. 29-34
  • Besombes, J.L., Cosnier, S., Labbe, P., Polyphenol oxidase-catechol: an electroenzymatic model system for characterizing the performance of matrices for biosensors (1996) Talanta, 43, pp. 1615-1619
  • Nakaminami, T., Ito, S., Kuwabata, S., Yoneyama, H., A biomimetic phospholipid/alkanethiolate bilayer immobilizing uricase and an electron mediator on an Au electrode for amperometric determination of uric acid (1999) Anal. Chem., 71, pp. 4278-4283
  • Wu, Q., Storrier, G.D., Pariente, F., A nitrite biosensor based on a maltose binding protein nitrite reductase fusion immobilized on an electropolymerized film of a pyrrole derived bipyridinium (1997) Anal. Chem., 69, pp. 4856-4863
  • Albery, W.J., Bartlett, P.N., Driscoll, B.J., Lennox, R.B., Amperometric enzyme electrodes. 5. The homogeneous mediated mechanism (1992) J. Electroanal. Chem., 323, pp. 77-102
  • Hodak, J., Etchenique, R., Calvo, E.J., Singhal, K., Bartlett, P.N., Layer-by-layer self-assembly of glucose oxidase with a poly(allylamine)ferrocene redox mediator (1997) Langmuir, 13, pp. 2708-2716
  • Bartlett, P.N., Pratt, K.F.E., A study of the kinetics of the reaction between ferrocene monocarboxylic acid and glucose oxidase using the rotating-disc electrode (1995) J. Electroanal. Chem., 397, pp. 53-60
  • Yokoyama, K., Kayanuma, Y., Cyclic voltammetric simulation for electrochemically mediated enzyme reaction and determination of enzyme kinetic constants (1998) Anal. Chem., 70, pp. 3368-3376
  • Galceran, J., Taylor, S.L., Bartlett, P.N., Modelling the steady-state current at the inlaid disc microelectrode for homogeneous mediated enzyme catalysed reactions (2001) J. Electroanal. Chem., 506, pp. 65-81
  • Bartlett, P.N., Pratt, K.F.E., Modeling of processes in enzyme electrodes (1993) Biosensors & Bioelectronics, 8, pp. 451-462
  • Bourdillon, C., Demaille, C., Moiroux, J., Saveant, J.M., Catalysis and mass-transport in spatially ordered enzyme assemblies on electrodes (1995) J. Am. Chem. Soc., 117, pp. 11499-11506
  • Press, W.H., Flannery, B., Teukolsky, S.A., Vetterling, W.T., Numerical Recipes, the Art of Scientific Computing (1986), 1st edn., CambridgeUniversity Press, Cambridge; Bourdillon, C., Demaille, C., Moiroux, J., Saveant, J.-M., From homogeneous electroenzymatic kinetics to antigenantibody construction and characterization of spatially ordered catalytic enzyme assemblies on electrodes (1996) Acc. Chem. Res., 29, pp. 529-535
  • Cenas, N.K., Kulys, J.J., Biocatalytic oxidation of glucose on the conductive charge-transfer complexes (1981) Bioelectrochem. Bioenerg., 8, pp. 103-113
  • Nicholson, R.S., Shain, I., Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems (1964) Anal. Chem., 36, p. 706
  • Liaudet, E., Battaglini, F., Calvo, E.J., Electrochemical study of sulfonated ferrocenes as redox mediators in enzyme electrodes (1990) J. Electroanal. Chem., 293, pp. 55-68
  • Battaglini, F., Calvo, E.J., Digital-simulation of homogeneous enzyme-kinetics for amperometric redox-enzyme electrodes (1992) Anal. Chim. Acta, 258, pp. 151-160
  • Heller, A., Degani, Y., Direct electrical communication between redox enzymes and metal-electrodes (1987) J. Electrochem. Soc., 134, pp. C494-C495
  • Gregg, B.A., Schmidt, H.L., Schuhmann, W., Ye, L., Heller, A., Electrical wiring of redox enzymes (1991) Abstracts of Papers of the American Chemical Society, 201, p. 188
  • Schuhmann, W., Ohara, T.J., Schmidt, H.L., Heller, A., Electron-transfer between glucose-oxidase and electrodes via redox mediators bound with flexible chains to the enzyme surface (1991) J. Am. Chem. Soc., 113, pp. 1394-1397
  • Bartlett, P.N., Whitaker, R.G., Green, M.J., Frew, J., Covalent binding of electron relays to glucose-oxidase (1987) Chem. Commun., pp. 1603-1604
  • Bartlett, P.N., Bradford, V.Q., Whitaker, R.G., Enzyme electrode studies of glucose oxidase modified with a redox mediator (1991) Talanta, 38, pp. 57-63
  • Ryabova, E.S., Goral, V.N., Csoregi, E., Mattiasson, B., Ryabov, A.D., Coordinative approach to mediated electron transfer: Ruthenium complexed to native glucose oxidase, Angew (1999) Chem., Int. Edn., 38, pp. 804-807
  • Badia, A., Carlini, R., Fernandez, A., Intramolecular electron-transfer rates in ferrocene-derivatized glucose-oxidase (1993) J. Amer. Chem. Soc., 115, pp. 7053-7060
  • Bartlett, P.N., Booth, S., Caruana, D.J., Kilburn, J.D., Santamaria, C., Modification of glucose oxidase by the covalent attachment of a tetrathiafulvalene derivative (1997) Anal. Chem., 69, pp. 734-742
  • Battaglini, F., Bartlett, P.N., Wang, J.H., Covalent attachment of osmium complexes to glucose oxidase and the application of the resulting modified enzyme in an enzyme switch responsive to glucose (2000) Anal. Chem., 72, pp. 502-509
  • Imabayashi, S., Ban, K., Ueki, T., Watanabe, M., Comparison of catalytic electrochemistry of glucose oxidase between covalently modified and freely diffusing phenothiazine-labeled poly(ethylene oxide) mediator systems (2003) J. Phys. Chem. B, 107, pp. 8834-8839
  • Ban, K., Ueki, T., Tamada, Y., Electrical communication between glucose oxidase and electrodes mediated by phenothiazine- labeled poly(ethylene oxide) bonded to lysine residues on the enzyme surface (2003) Anal. Chem., 75, pp. 910-917
  • Cass, A.E.G., Davis, G., Francis, G.D., Ferrocenemediated enzyme electrode for amperometric determination of glucose (1984) Anal. Chem., 56, pp. 667-671
  • Riklin, A., Katz, E., Willner, I., Stocker, A., Buckmann, A.F., Improving enzyme-electrode contacts by redox modification of cofactors (1995) Nature, 376, pp. 672-675
  • Green, M.J., Hill, H.A.O., Amperometric enzyme electrodes (1986) J. Chem. Soc., Faraday Trans. I, 82, pp. 1237-1243
  • Rusling, J.F., Ito, K., Voltammetric determination of electron-transfer rate between an enzyme and a mediator (1991) Anal. Chim. Acta, 252, pp. 23-27
  • Frede, M., Steckhan, E., Continuous electrochemical activation of flavoenzymes using polyethyleneglycol-bound ferrocenes as mediators-a model for the application of oxidoreductases as oxidation catalysts in organic synthesis (1991) Tet. Lett., 32, pp. 5063-5066
  • Zakeeruddin, S.M., Fraser, D.M., Nazeeruddin, M.K., Gratzel, M., Towards mediator design-characterization of tris-(4,40-substituted-2,20-bipyridine) complexes of iron(II), ruthenium(II) and osmium(II) as mediators for glucoseoxidase of Aspergillus-niger and other redox proteins (1992) J. Electroanal. Chem., 337, pp. 253-283
  • Bourdillon, C., Demaille, C., Moiroux, J., Saveant, J.M., New insights into the enzymatic catalysis of the oxidation of glucose by native and recombinant glucose oxidase mediated by electrochemically generated one-electron redox cosubstrates (1993) J. Am. Chem. Soc., 115, pp. 2-10
  • Bartlett, P.N., Tebbutt, P., Whitaker, R.G., Kinetic aspects of the use of modified electrodes and mediators in bioelectrochemistry, Prog (1991) Reaction Kinetics, 16, pp. 55-155
  • Limoges, B., Moiroux, J., Saveant, J.-M., Kinetic control by the substrate and/or the cosubstrate in electrochemically monitored redox enzymatic homogeneous systems. Catalytic responses in cyclic voltammetry (2002) J. Electroanal. Chem., 521, pp. 1-7
  • Matsumoto, R., Kano, K., Ikeda, T., Theory of steadystate catalytic current of mediated bioelectrocatalysis (2002) J. Electroanal. Chem., 535, pp. 37-40
  • Pratt, K., (1993), PhD thesis, University of Southampton, Southampton; Leskovac, V., Trivic, S., Wohlfahrt, G., Kandrac, J., Pericin, D., Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and oneelectron acceptors (2005) Int. J. Biochem Cell Biol., 37, pp. 731-750
  • Anicet, N., Bourdillon, C., Demaille, C., Moiroux, J., Saveant, J.-M., Catalysis of the electrochemical oxidation of glucose by glucose oxidase and a single electron cosubstrate: kinetics in viscous solutions (1996) J. Electroanal. Chem., 410, pp. 199-202
  • Bourdillon, C., Demaille, C., Gueris, J., Moiroux, J., Saveant, J.M., A fully active monolayer enzyme electrode derivatized by antigen-antibody attachment (1993) J. Am. Chem. Soc., 115, pp. 12264-12269
  • Forrow, N.J., Sanghera, G.S., Walters, S.J., The influence of structure in the reaction of electrochemically generated ferrocenium derivatives with reduced glucose oxidase (2002) J. Chem. Soc., Dalton Trans., pp. 3187-3194
  • Mell, L.D., Maloy, J.T., Model for amperometric enzyme electrode obtained through digital-simulation and applied to immobilized glucose oxidase system (1975) Anal. Chem., 47, pp. 299-307
  • Lucisano, J.Y., Gough, D.A., Transient-response of the two-dimensional glucose sensor (1988) Anal. Chem., 60, pp. 1272-1281
  • Wilson, R., Turner, A.P.F., Glucose oxidase: an ideal enzyme (1992) Biosensors and Bioelectronics, 7, pp. 165-185
  • Gooding, J.J., Erokhin, P., Hibbert, D.B., Parameters important in tuning the response of monolayer enzyme electrodes fabricated using self-assembled monolayers of alkanethiols (2000) Biosens. Bioelectr., 15, pp. 229-239
  • Gooding, J.J., Erokhin, P., Losic, D., Parameters important in fabricating enzyme electrodes using self-assembled monolayers of alkanethiols (2001) Anal. Sci., 17, pp. 3-9
  • Gooding, J.J., Hall, E.A.H., Hibbert, D.B., From thick films to monolayer recognition layers in amperometric enzyme electrodes (1998) Electroanalysis, 10, pp. 1130-1136
  • Gooding, J.J., Hibbert, D.B., The application of alkanethiol self-assembled monolayers to enzyme electrodes (1999) Trends in Anal. Chem., 18, pp. 525-533
  • Gooding, J.J., Pugliano, L., Hibbert, D.B., Erokhin, P., Amperometric biosensor with enzyme amplification fabricated using self-assembled monolayers of alkanethiols: The influence of the spatial distribution of the enzymes, Electrochem (2000) Commun., 2, pp. 217-221
  • Gooding, J.J., Situmorang, M., Erokhin, P., Hibbert, D.B., An assay for the determination of the amount of glucose oxidase immobilised in an enzyme electrode (1999) Anal. Commun., 36, pp. 225-228
  • Li, J.H., Yan, J.C., Deng, Q., Cheng, G.J., Dong, S.J., Viologen-thiol self-assembled monolayers for immobilized horseradish peroxidase at gold electrode surface (1997) Electrochim. Acta, 42, pp. 961-967
  • Jiang, L., McNeil, C.J., Cooper, J.M., Direct electrontransfer reactions of glucose-oxidase immobilized at a selfassembled monolayer (1995) Chem. Commun., pp. 1293-1295
  • Barmin, A.V., Eremenko, A.V., Kurochkin, I.N., Sokolovsky, A.A., Cyclic voltammetry of ferrocenecarboxylic acid monomolecular films and their reaction with glucose oxidase (1994) Electroanal., 6, pp. 107-112
  • Sun, S., Ho-Si, P.H., Harrison, D.J., Preparation of active Langmuir-Blodgett films of glucose oxidase (1991) Langmuir, 7, pp. 727-737
  • Tsuji, H., Mitsubayashi, K., An amperometric glucose sensor with modified Langmuir-Blodgett films (1997) Electroanal., 9, pp. 161-164
  • Rusling, J.F., Enzyme bioelectrochemistry in cast biomembrane- like films (1998) Acc. Chem. Res., 31, pp. 363-369
  • Schlereth, D.D., Kooyman, R.P.H., Self-assembled monolayers with biospecific affinity for lactate dehydrogenase for the electroenzymatic oxidation of lactate (1997) J. Electroanal. Chem., 431, pp. 285-295
  • Anicet, N., Anne, A., Moiroux, J., Saveant, J.M., Electron transfer in organized assemblies of biomolecules. Construction and dynamics of avidin/biotin co-immobilized glucose oxidase/ferrocene monolayer carbon electrodes (1998) J. Am. Chem. Soc., 120, pp. 7115-7116
  • Creager, S.E., Olsen, K.G., Self-assembled monolayers and enzyme electrodes-progress, problems and prospects (1995) Anal. Chim. Acta, 307, pp. 277-289
  • Katz, E., Riklin, A., Willner, I., Application of stilbene-(4,40-diisothiocyanate)-2,20-disulfonic acid as a bifunctional reagent for the organization of organic materials and proteins onto electrode surfaces (1993) J. Electroanal. Chem., 354, pp. 129-144
  • Willner, I., Riklin, A., Shoham, B., Rivenzon, D., Katz, E., Development of novel biosensor enzyme electrodes- glucoseoxidase multilayer arrays immobilized onto self-assembled monolayers electrodes (1993) Adv. Mater., 5, pp. 912-915
  • Hou, S.F., Fang, H.Q., Chen, H.Y., An amperometric enzyme electrode for glucose using immobilized glucose oxidase in a ferrocene attached poly(4-vinylpyridine) multilayer film (1997) Anal. Lett., 30, pp. 1631-1641
  • Yoon, H.C., Kim, H.-S., Multilayered assembly of dendrimers with enzymes on gold: thickness-controlled biosensing interface (2000) Anal. Chem., 72, pp. 922-926
  • Bourdillon, C., Demaille, C., Moiroux, J., Saveant, J.M., Step-by-step immunological construction of a fully active multilayer enzyme electrode (1994) J. Am. Chem. Soc., 116, pp. 10328-10329
  • Anicet, N., Bourdillon, C., Moiroux, J., Saveant, J.-M., Electron transfer in organized assemblies of biomolecules Step-by-step avidin/biotin construction and dynamic characteristics of a spatially ordered multilayer enzyme electrode (1998) J. Phys. Chem. B., 102, pp. 9844-9849
  • Gooding, J.J., Praig, V.G., Hall, E.A.H., Platinumcatalyzed enzyme electrodes immobilized on gold using self-assembled layers (1998) Anal. Chem., 70, pp. 2396-2402
  • Calvo, E.J., Wolosiuk, A., Supramolecular architectures of electrostatic self-assembled glucose oxidase enzyme electrodes (2004) ChemPhysChem, 5, pp. 235-239
  • Aizawa, M., Nishiguchi, K., Imamura, M., Kobatake, E., Haruyama, T., Ikariyama, Y., Integrated molecular-systems for biosensors (1995) Sensors and Actuators B, 24, pp. 1-5
  • Willner, I., Heleg-Shabtai, V., Blonder, R., Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes (1996) J. Am. Chem. Soc., 118, pp. 10321-10322
  • Vilkanauskyte, A., Erichsen, T., Marcinkeviciene, L., Laurinavicius, V., Schuhmann, W., Reagentless biosensors based on co-entrapment of a soluble redox polymer and an enzyme within an electrochemically deposited polymer film (2002) Biosens. Bioelectr., 17, pp. 1025-1031
  • Gregg, B.A., Heller, A., Redox polymer-films containing enzymes. 1. A redox-conducting epoxy cement-synthesis, characterization, and electrocatalytic oxidation of hydroquinone (1991) J. Phys. Chem., 95, pp. 5970-5975
  • Gregg, B.A., Heller, A., Redox polymer-films containing enzymes. 2. Glucose-oxidase containing enzyme electrodes (1991) J. Phys. Chem., 95, pp. 5976-5980
  • Gregg, B.A., Heller, A., Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications (1990) Anal. Chem., 62, pp. 258-263
  • Battaglini, F., Calvo, E.J., Danilowicz, C., Wolosiuk, A., Effect of ionic strength on the behavior of amperometric enzyme electrodes mediated by redox hydrogels (1999) Anal. Chem., 71, pp. 1062-1067
  • Calvo, E.J., Danilowicz, C., Diaz, L., Enzyme catalysis at hydrogel-modified electrodes with redox polymer mediator (1993) J. Chem. Soc., Faraday Trans., 89, pp. 377-384
  • Calvo, E.J., Danilowicz, C., Diaz, L., A new polycationic hydrogel for 3-dimensional enzyme wired modified electrodes (1994) J. Electroanal. Chem., 369, pp. 279-282
  • Calvo, E.J., Etchenique, R., DanilowiczandL, C.D., Electrical communication between electrodes and enzymes mediated by redox hydrogels (1996) Anal. Chem., 68, pp. 4186-4193
  • Iwuoha, E.I., Smyth, M.R., Vos, J.G., Amperometric glucose sensor containing nondiffusional osmium redox centers-analysis of organic-phase responses (1994) Electroanal., 6, pp. 982-989
  • Mell, L.D., Maloy, J.T., Amperometric response enhancement of immobilized glucose oxidase enzyme electrode (1976) Anal. Chem., 48, pp. 1597-1601
  • Shu, F.R., Wilson, G.S., Rotating-ring-disk enzyme electrode for surface catalysis studies (1976) Anal. Chem., 48, pp. 1679-1686
  • Gough, D.A., Leypoldt, J.K., Membrane-covered, rotated disk electrode (1979) Anal. Chem., 51, pp. 439-444
  • Gough, D.A., Leypoldt, J.K., Rotated, membrane-covered oxygen-electrode (1980) Anal. Chem., 52, pp. 1126-1130
  • Gough, D.A., Lucisano, J.Y., Tse, P.H.S., Two-dimensional enzyme electrode sensor for glucose (1985) Anal. Chem., 57, pp. 2351-2357
  • Blaedel, W.J., Boguslas, R.C., Kissel, T.R., Kinetic behavior of enzymes immobilized in artificial membranes (1972) Anal. Chem., 44, p. 2030
  • Kulys, J.J., Sorochinskii, V.V., Vidziunaite, R.A., Transient-response of bienzyme electrodes (1986) Biosensors, 2, pp. 135-146
  • Bartlett, P.N., Whitaker, R.G., Electrochemical immobilisation of enzymes: Part I Theory (1987) J. Electroanal. Chem., 224, pp. 27-35
  • Bartlettand, P.N., Whitaker, R.G., Electrochemicalimmobilisationof enzymes:Part II. Glucose oxidase immobilised inpoly-N-methylpyrrole (1987) J. Electroanal. Chem., 224, pp. 37-48
  • Marchesiello, M., Genies, E., A theoretical-model for an amperometric glucose sensor using polypyrrole as the immobilization matrix (1993) J. Electroanal. Chem., 358, pp. 35-48
  • Yokoyama, K., Tamiya, E., Karube, I., Kinetics of an amperometric glucose sensor with a soluble mediator (1989) J. Electroanal. Chem., 273, pp. 107-117
  • Bartlett, P.N., Cooper, J.M., A review of the immobilization of enzymes in electropolymerized films (1993) J. Electroanal. Chem., 362, pp. 1-12
  • Chaubey, A., Malhotra, B.D., Mediated biosensors (2002) Biosens. Bioelectr., 17, pp. 441-456
  • Gerard, M., Chaubey, A., Malhotra, B.D., Application of conducting polymers to biosensors (2002) Biosens. Bioelectr., 17, pp. 345-359
  • Bourdillon, C., Demaille, C., Moiroux, J., Saveant, J.M., Analyzing product inhibition and pH gradients in immobilized enzyme films as illustrated experimentally by immunologically bound glucose oxidase electrode coatings (1999) J. Phys. Chem. B, 103, pp. 8532-8537
  • Lyons, M.E.G., Mediated electron transfer at redox active monolayers. Part 4: Kinetics of redox enzymes coupled with electron mediators (2003) Sensors, 3, pp. 19-42
  • Limoges, B., Moiroux, J., Saveant, J.-M., Kinetic control by the substrate and the cosubstrate in electrochemically monitored redox enzymatic immobilized systems. Catalytic responses in cyclic voltammetry and steady state techniques (2002) J. Electroanal. Chem., 521, pp. 8-15
  • Kajiya, Y., Sugai, H., Iwakura, C., Yoneyama, H., Glucose sensitivity of polypyrrole films containing immobilized glucose oxidase and hydroquinonesulfonate ions (1991) Anal. Chem., 63, pp. 49-54
  • Fortier, G., Vaillancourt, M., Bélanger, D., Evaluation of Nafion as media for glucose-oxidae immobilization for the development of an amperometric glucose biosensor (1992) Electroanal., 4, pp. 275-283
  • Gough, D.A., Leypoldt, J.K., Theoretical aspects of enzyme. electrode design (1981) Appl. Biochem. Bioeng., 3, p. 175
  • Leypoldt, J.K., Gough, D.A., Model of a 2-substrate enzyme electrode for glucose (1984) Anal. Chem., 56, pp. 2896-2904
  • Atkinson, B., Lester, D.E., (1974), 26, p. 1299; Schulmeister, T., Scheller, F., Mathematical treatment of concentration profiles and anodic current for amperometric enzyme electrodes (1985) Anal. Chim. Acta, 170, pp. 279-285
  • Schulmeister, T., Scheller, F., Mathematical description of concentration profiles and anodic currents for amperometric 2-enzyme electrodes (1985) Anal. Chim. Acta, 171, pp. 111-118
  • Bourdillon, C., Laval, J.-M., Thomas, D., Enzymatic electrocatalysis-controlled potential electrolysis and cosubstrate regeneration with immobilized enzyme modified electrode (1986) J. Electrochem. Soc., 133, pp. 706-711
  • Battaglini, F., Calvo, E.J., Enzyme catalysis at hydrogelmodified electrodes with soluble redox mediator (1994) J. Chem. Soc., Faraday Trans., 90, pp. 987-995
  • Flexer, V., Calvo, E.J., Unpublished results (2006); Danilowicz, C., Manrique, J.M., A new self-assembled modified electrode for competitive immunoassay Electrochem (1999) Commun., 1, pp. 22-25
  • Calvo, E.J., Danilowicz, C., Lagier, C.M., Manrique, J., Otero, M., Characterization of self-assembled redox polymer and antibody molecules on thiolated gold electrodes (2004) Biosens. Bioelectr., 19, pp. 1219-1228
  • Anicet, N., Bourdillon, C., Moiroux, J., Saveant, J.-M., Step-by-step avidin-biotin construction of bienzyme electrodes. Kinetic analysis of the coupling between the catalytic activities of immobilized monomolecular layers of glucose oxidase and hexokinase (1999) Langmuir, 15, pp. 6527-6533
  • Dequaire, M., Limoges, B., Moiroux, J., Saveant, J.M., Mediated electrochemistry of horseradish peroxidase. Catalysis and inhibition (2002) J. Am. Chem. Soc., 124, pp. 240-253
  • Anicet, N., Anne, A., Bourdillon, C., Electrochemical approach to the dynamics of molecular recognition of redox enzyme sites by artificial cosubstrates in solution and in integrated systems (2000) Faraday Discuss., pp. 269-279
  • Anzai, J., Kobayashi, Y., Nakamura, N., Nishimura, M., Hoshi, T., Layer-by-layer construction of multilayer thin films composed of avidin and biotin-labeled poly(amine)s (1999) Langmuir, 15, pp. 221-226
  • Anzai, J., Kobayashi, Y., Suzuki, Y., Enzyme sensors prepared by layer-by-layer deposition of enzymes on a platinum electrode through avidin-biotin interaction (1998) Sensors and Actuators B, 52, pp. 3-9
  • Calvo, E.J., Battaglini, F., Danilowicz, C., Wolosiuk, A., Otero, M., Layer-by-layer electrostatic deposition of biomolecules on surfaces for molecular recognition, redox mediation and signal generation (2000) Faraday Discuss., 116, pp. 47-65+ 67-75. , discussion
  • Calvo, E.J., Etchenique, R., Pietrasanta, L., Wolosiuk, A., Danilowicz, C., Layer-by-layer self-assembly of glucose oxidase and Os(bpy)2ClPyCH2NH-poly(allylamine) bioelectrode (2001) Anal. Chem., 73, pp. 1161-1168
  • Calvo, E.J., Wolosiuk, A., Wiring enzymes in nanostructures built with electrostatically self-assembled thin films (2005) ChemPhysChem, 6, pp. 43-47
  • Calvo, E.J., Danilowicz, C.B., Wolosiuk, A., Supramolecular multilayer structures of wired redox enzyme electrodes, Phys (2005) Chem. Chem. Phys., 7, pp. 1800-1806
  • Yoon, H.C., Hong, M.Y., Kim, H.S., Functionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode (2000) Anal. Chem., 72, pp. 4420-4427
  • Rosca, V., Popescu, I.C., Kinetic analysis of horseradish peroxidase ?wiring? in redox polyelectrolyte-peroxidase multilayer assemblies (2002) Electrochem. Commun., 4, pp. 904-911
  • Li, W.J., Wang, Z., Sun, C.Q., Xian, M., Zhao, M.Y., Fabrication of multilayer films containing horseradish peroxidase and polycation-bearing Os complex by means of electrostatic layer-by-layer adsorption and its application as a hydrogen peroxide sensor (2000) Anal. Chim. Acta, 418, pp. 225-232
  • Sun, J.Q., Wu, T., Sun, Y.P., Fabrication of a covalently attached multilayer via photolysis of layer-by-layer selfassembled films containing diazo-resins (1998) Chem. Commun., pp. 1853-1854
  • Sun, J.Q., Wang, Z.Q., Wu, L.X., Investigation of the covalently attached multilayer architecture based on diazoresins and poly(4-styrene sulfonate) (2001) Macromol. Chem. Phys., 202, pp. 967-973
  • Ferreyra, N.F., Coche-Guerente, L., Labbe, P., Calvo, E.J., Solis, V.M., Electrochemical behavior of nitrate reductase immobilized in self-assembled structures with redox polyviologen (2003) Langmuir, 19, pp. 3864-3874
  • Calvo, E.J., Danilowicz, C., Wolosiuk, A., Molecular ?wiring? enzymes in organized nanostructures (2002) J. Am. Chem. Soc., 124, pp. 2452-2453
  • Calvente, J.J., Narvaez, A., Dominguez, E., Andreu, R., Kinetic analysis of wired enzyme electrodes. Application to horseradish peroxidase entrapped in a redox polymer matrix (2003) J. Phys. Chem. B, 107, pp. 6629-6643
  • Blauch, D.N., Saveant, J.M., Dynamics of electron hopping in assemblies of redox centers-percolation and diffusion (1992) J. Am. Chem. Soc., 114, pp. 3323-3332
  • Anne, A., Demaille, C., Moiroux, J., Elastic bounded diffusion. Dynamics of ferrocene-labeled poly(ethylene glycol) chains terminally attached to the outermost monolayer of successively self-assembled monolayers of immunoglobulins (1999) J. Am. Chem. Soc., 121, pp. 10379-10388
  • Mao, F., Mano, N., Heller, A., Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme ?wiring? hydrogels (2003) J. Am. Chem. Soc., 125, pp. 4951-4957
  • Fushimi, T., Oda, A., Ohkita, H., Ito, S., Fabrication and electrochemical properties of layer-by-layer deposited ultrathin polymer films bearing ferrocene moieties (2005) Thin Solid Films, 484, pp. 318-323
  • Albery, W.J., Kalia, Y.N., Magner, E., Amperometric enzyme electrodes. 6. Enzyme electrodes for sucrose and lactose (1992) J. Electroanal. Chem., 325, pp. 83-93
  • Bacha, S., Bergel, A., Comtat, M., Modeling of Amperometric Biosensors By a Finite-Volume Method (1993) J. Electroanal. Chem., 359, p. 21
  • Randriamahazaka, H., Nigretto, J.M., Digitally simulated predictions of the voltammetric current response relative to adsorbed enzyme-modified electrodes (1993) Electroanal., 5, p. 221
  • Tatsuma, T., Watanabe, T., Theoretical evaluation of mediation efficiency in enzyme-incorporated electrodes (1993) Anal. Chem., 65, p. 3129
  • Martens, N., Hall, E.A.H., Model for an immobilized oxidase enzyme electrode in the presence of 2 oxidants (1994) Anal. Chem., 66, p. 2763
  • Rhodes, R.K., Shults, M.C., Updike, S.J., Prediction of pocket-portable and implantable glucose enzyme electrode performance from combined species permeability and digital-simulation analysis (1994) Anal. Chem., 66, p. 1520
  • Albery, W.J., Driscoll, B.J., Kalia, Y.N., Amperometric enzyme electrodes. 8. Enzyme electrodes for choline plus betaine aldehyde and hypoxanthine plus xanthine. A kinetic model for a one-enzyme sequential substrate system (1995) J. Electroanal. Chem., 399, pp. 13-20
  • Chen, Y., Tan, T.C., Mathematical-model on the sensing behavior of a biooxidation biosensor (1995) Aiche Journal, 41, p. 1025
  • Lyons, M.E.G., Greer, J.C., Fitzgerald, C.A., Bannon, T., Bartlett, P.N., Reaction/diffusion with Michaelis-Menten kinetics in electroactive polymer films. 1. The steady-state amperometric response (1996) Analyst, 121, p. 715
  • Cambiaso, A., Delfino, L., Grattarola, M., Modelling and simulation of a diffusion limited glucose biosensor (1996) Sens. Actuators B, 33, p. 203
  • Gooding, J.J., Hall, E.A.H., Practical and theoretical evaluation of an alternative geometry enzyme electrode (1996) J. Electroanal. Chem., 417, p. 25
  • Jobst, G., Moser, I., Urban, G., Numerical simulation of multi-layered enzymatic sensors (1996) Biosens. Bioelectron., 11, p. 111
  • Desprez, V., Labbe, P., A kinetic model for the electroenzymatic processes involved in polyphenol-oxidase-based amperometric catechol sensors (1996) J. Electroanal. Chem., 415, p. 191
  • Chen, Y., Tan, T.C., Modelling and experimental study of the transient behaviour of plant tissue sensors in sensing dopamine (1996) Chem. Eng. Sci., 51, p. 1027
  • Krishnan, P., Atanasov, P., Wilkins, E., Mathematical modeling of an amperometric enzyme electrode based on a porous matrix of Stober glass beads (1996) Biosens. Bioelectron., 11, p. 811
  • Zhu, K., Wu, H.H., Kinetic analysis of an enzymecontaining polymer modified electrode (1997) Chem. Res. Chinese U., 13, p. 59
  • Neykov, A., Georgiev, T., Mathematical modelling of amperometric biosensor systems with non-linear enzyme kinetics (1998) Chem. Biochem. Eng. Q., 12, p. 73
  • Gajovic, N., Warsinke, A., Huang, T., Schulmeister, T., Scheller, F.W., Characterization and mathematical modeling of a bienzyme electrode for L-malate with cofactor recycling (1999) Anal. Chem., 71, p. 4657
  • CocheGuerente, L., Desprez, V., Diard, J.P., Labbe, P., Amplification of amperometric biosensor responses by electrochemical substrate recycling Part I. Theoretical treatment of the catechol-polyphenol oxidase system (1999) J. Electroanal. Chem., 470, p. 53
  • CocheGuerente, L., Desprez, V., Labbe, P., Therias, S., Amplification of amperometric biosensor responses by electrochemical substrate recycling Part II. Experimental study of the catechol-polyphenol oxidase system immobilized in a laponite clay matrix (1999) J. Electroanal. Chem., 470, p. 61
  • Ohgaru, T., Tatsumi, H., Kano, K., Ikeda, T., Approximate and empirical expression of the steady-state catalytic current of mediated bioelectrocatalysis to evaluate enzyme kinetics (2001) J. Electroanal. Chem., 496, pp. 37-43
  • Limoges, B., Moiroux, J., Saveant, J.-M., Erratum to ?Kinetic control by the substrate and the cosubstrate in electrochemically monitored redox enzymatic immobilized systems. Catalytic responses in cyclic voltammetry and steady state techniques? [J. Electroanal. Chem. 521 (2002) 8-15] (2002) J. Electroanal. Chem., 529, p. 75
  • Baronas, R., Kulys, J., Ivanauskas, F., Modelling amperometric enzyme electrode with substrate cyclic conversion (2004) Biosens. Bioelectron., 19, pp. 915-922
  • Bright, H.J., Appleby, M., The pH dependence of the individual steps in the glucose oxidase reaction (1969) J. Biol. Chem., 244, pp. 3625-3634
  • Gibson, Q.H., Swoboda, B.E., Massey, V., Kinetics and mechanism of action of glucose oxidase (1964) J. Biol. Chem., 239, pp. 3927-3934

Citas:

---------- APA ----------
Bartlett, P.N., Toh, C.S., Calvo, E.J. & Flexer, V. (2008) . Modelling Biosensor Responses. Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications, 267-325.
http://dx.doi.org/10.1002/9780470753842.ch8
---------- CHICAGO ----------
Bartlett, P.N., Toh, C.S., Calvo, E.J., Flexer, V. "Modelling Biosensor Responses" . Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications (2008) : 267-325.
http://dx.doi.org/10.1002/9780470753842.ch8
---------- MLA ----------
Bartlett, P.N., Toh, C.S., Calvo, E.J., Flexer, V. "Modelling Biosensor Responses" . Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications, 2008, pp. 267-325.
http://dx.doi.org/10.1002/9780470753842.ch8
---------- VANCOUVER ----------
Bartlett, P.N., Toh, C.S., Calvo, E.J., Flexer, V. Modelling Biosensor Responses. Bioelectrochemistry: Fundamentals, Exp. Tech. and Appl. 2008:267-325.
http://dx.doi.org/10.1002/9780470753842.ch8