Parte de libro

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Registro:

Documento: Parte de libro
Título:Electrical Conductivity in Hydrothermal Binary and Ternary Systems
Autor:Corti, H.R.
Filiación:University of Buenos Aires, Department of Physics of Condensed Matter, Institute of Physical Chemistry of Materials, Environment and Energy (INQUIMAE), Buenos Aires, Argentina
Palabras clave:Alternating current flow-through conductivity cell; Aqueous electrolytes - electrical conductivity; Conductivity equation (TBBK) and mean spherical approximation (MSA); Data treatment; Flow-through conductivity cell; Franck's cell design and Oak Ridge National Laboratory (ORNL); Hydrothermal binary, ternary systems and electrical conductivity; Multicomponent aqueous systems and electrical conductivity; Static high temperature cells
Año:2008
Página de inicio:207
Página de fin:226
DOI: http://dx.doi.org/10.1002/9780470094679.ch4
Título revista:Hydrothermal Experimental Data
Título revista abreviado:Hydrothermal Exp. Data
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97804700_v_n_p207_Corti

Referencias:

  • Anderko, A., Lencka, M.M., Ind. Eng. Chem. Res. (1997), 36, p. 1932; Baghalha, M., Papangelakis, V.G., Ind. Eng. Chem. Res. (2000), 39, p. 3646; Bannard, J.E., J. Appl.Electrochem. (1975), 5, p. 43; Bianchi, H., Conductivity of mixtures of symmetrialc and unsymmetrical electrolytes in aqueous solutions (1990), Thesis, University of Buenos Aires; Bianchi, H., Corti, H.R., Fernández-Prini, R., J. Solution Chem. (1994), 23, p. 1203; Bianchi, H., Dujovne, I., Fernández-Prini, R., J. Solution Chem. (2000), 29, p. 237; Brown, R.D., Bunger, W.B., Marshall, W.L., Secoy, C.H., J. Amer. Chem. Soc. (1954), 76, p. 1532; Campbell, A.N., Kartzmark, E.M., Bednas, M.E., Herron, J.T., Can. J. Chem. (1954), 32, p. 1051; Corti, H.R., Fernández-Prini, R., J. Chem. Soc. Faraday Trans.II (1986), 82, p. 921; Corti, H.R., Trevani, L.N., Anderko, A., Transport properties in high temperature and pressure ionic solutions (2004), pp. 317-379. , In: D. Palmer, R. Fernández Prini and A. Harvey (eds), Steam, Water and Hydrothermal Solutions: Physical Chemistry of Aqueous Systems at Elevated Temperatures and Pressures. Academic Press, Chapter 10; Corwin, J.F., Bayless, R.G., Owen, G.E., J. Phys. Chem. (1960), 64, p. 641; Dunn, L.A., Marshall, W.L., J. Phys. Chem. (1969), 73, p. 723; Eberz, A., Franck, E.U., Ber. Bunsenges. Phys. Chem. (1995), 99, p. 1091; Ellis, A.J., J. Chem. Soc. (1963), 4, p. 2299; Ellis, A.J., J. Chem. Soc. (1963), 9, p. 4300; Fernández-Prini, R., Trans. Faraday Soc. (1969), 65, p. 3311; Fernández-Prini, R., (1973), In A.K. Covington and T. Dickinson (eds), Organic Solvent Systems, Chap. 5, Part 1: Conductance, Plenum Press, New York; Fernández-Prini, R., Justice, J.-C., Pure Appl. Chem. (1984), 56, p. 541; Fernández-Prini, R., Corti, H.R., Japas, M.L., High Temperature Aqueous Solutions: Thermodynamic Properties (1992), CRC Press; Fogo, J.K., Copeland, C.S., Benson, S.W., Rev. Sci. Instrum. (1951), 22, p. 765; Fogo, J.K., Benson, S.W., Copeland, C.S., J. Chem. Phys. (1954), 22, p. 212; Franck, E.U., Z. Phys. Chem. (1956), 8, p. 92; Franck, E.U., Z. Phys. Chem. (1956), 8, p. 107; Franck, E.U., Z. Phys. Chem. (1956), 8, p. 192; Franck, E.U., Savolainen, J.E., Marshall, W.L., Rev. Sci. Instrum. (1962), 33, p. 115; Franck, E.U., Hartmann, D., Hensel, F., J. Chem. Soc., Disc. Faraday Soc. (1965), 39, p. 200; Frantz, J.D., Marshall, W.L., Am. J. Sci. (1982), 281, p. 1666; Frantz, J.D., Marshall, W.L., Am. J. Sci. (1984), 284, p. 651; Fuoss, R., Kraus, C.A., J. Am. Chem. Soc. (1933), 55, p. 476; Fuoss, R., Onsager, L., J. Phys. Chem. (1957), 61, p. 668; Fuoss, R., Hsia, K.-L., Proc. Natl. Acad. Sci. U.S. (1967), 57, p. 1550; Goemans, M.G.E., Funk, T.J., Sedillo, M.A., Buelow, S.J., Anderson, G.K., J. Supercritical Fluids (1997), 11, p. 61; Gorbachev, S.V., Kondrat'ev, V.P., Zh. Fizich. Khim. (1961), 35, p. 1235; Gruszkiewicz, M.S., Wood, R.H., J. Phys. Chem. B (1997), 101, p. 6547; Haase, R., Thermodynamics of Irreversible Processes (1969), Dover Pub. Inc. New York; Hamann, S.D., Linton, M., J. Chem. Soc. Faraday Trans. (1966), 62, p. 2234; Hamann, S.D., Linton, M., J. Chem. Soc. Faraday Trans. (1969), 65, p. 2189; Harned, H.S., Owen, B.B., The Physical Chemistry of Electrolytic Solutions (1958), 3rd edn. Reinhold Pub. Co. New York; Hartmann, D., Franck, E.U., Ber. Bunsenges. Phys. Chem. (1969), 73, p. 514; Hnedkovsky, L., Wood, R.H., Balashov, V.N., J. Phys. Chem. B (2005), 109, p. 9034; Ho, P.C., Palmer, D.A., Mesmer, R.E., J. Solution Chem. (1994), 23, p. 997; Ho, P.C., Palmer, D.A., J. Solution Chem. (1995), 24, p. 753; Ho, P.C., Palmer, D.A., (1995), Report ORNL/TM-13185, Oak Ridge Natl.Lab; Ho, P.C., Palmer, D.A., J. Solution Chem. (1996), 25, p. 711; Ho, P.C., Palmer, D.A., Geochim. Cosmochim. Acta (1997), 61, p. 3027; Ho, P.C., Palmer, D.A., J. Chem. Eng. Data. (1998), 43, p. 162; Ho, P.C., Bianchi, H., Palmer, D.A., Wood, R.H., J. Solution Chem. (2000), 29, p. 217; Ho, P.C., Palmer, D.A., Wood, R.H., J. Phys. Chem. B (2000), 104, p. 12084; Ho, P.C., Palmer, D.A., Gruszkiewicz, M.S., J. Phys. Chem. B (2001), 105, p. 1260; Huang, M., Papangelakis, V.G., Ind. Eng. Chem. Reseach (2006), 45, p. 4757; Huang, M., Papangelakis, V.G., Ind. Eng. Chem. Reseach (2007), 46, p. 1598; Hwang, J.U., Luedemann, H.D., Hartmann, D., High Temp.-High Press (1970), 2, p. 651; Release on the Ion Product of Water Substance (1980), pp. A124-A131. , IAPWS, (1995) In Physical Chemistry of Aqueous Systems. Meeting the Needs of Industry. Edited by White et al; Guideline on Electrolytic Conductivity (Specific Conductance) of Liquid and Dense Supercritical Water from 0 °C to 800 °C and Pressures up to 1000 MPa (1990), pp. A160-A165. , IAPWS, (1995) In Physical Chemistry of Aqueous Systems. Meeting the Needs of Industry. Edited by White et al; Release on the Static Dielectric Constant of Ordinary Water Substance for Temperatures from 238 K to 873 K and pressures up to 1000 MPa (1997), IAPWS; Revised Release on the IAPS Formulation 1985 for the Viscosity of Ordinary Water Substance (2003), IAPWS; Ibuki, K., Ueno, M., Nakahara, M., J. Phys. Chem. B (2000), 104, p. 5139; Ismail, I.M., Masuko, Y., Tomiyasu, H., Fujii, Y., J. Supercritical Fluids. (2003), 25, p. 69; Justice, J.-C., (1983), 4. , In B.E. Conway, J.O'M .Bockris, E. Yeager (eds), Comprehensive Treatise of Electrochemistry, Chapter 3. Plenum Press, New York; Khitarov, N.I., Ryzhenko, B.N., Lebedev, E.B., Geokhimiya. (1963), 1, p. 41; Kohlrausch, F., Ann. Phys. (1898), 66, p. 785; Kondrat'ev, V.P., Nikich, V.I., Zh. Fizich. Khimii. (1963), 37, p. 100; Kondrat'ev, V.P., Gorbachev, S.V., Zh. Fizich. Khimii. (1965), 39, p. 2993; Korobkov, V.I., Mikhilev, A.D., Electrokhimiya. (1970), 6, p. 1002; Larionov, E.G., Kryukov, P.A., (1976), pp. 164-168. , International Corrosion Conference Series, NACE Proceedings, NACE-4 (High Temperature High Pressure Electrochemistry in Aqueous Solutions Conference); Lee, W., Wheaton, R., J. Chem. Soc. Faraday Trans. II (1978), 74, p. 743; Lee, S.H., Cummings, P.T., Simonson, J.M., Mesmer, R.E., Chem. Phys. Lett. (1998), 293, p. 289; Lee, S.H., Cummings, P.T., J. Chem. Phys. (2000), 112, p. 864; Lown, D.A., Thirsk, H.R., Wynne-Jones, L., J. Chem. Soc. Faraday Trans. (1970), 66, p. 51; Lown, D.A., Thirsk, H.R., J. Chem. Soc. Faraday Trans. (1971), 67, p. 132; Maksimova, I.N., Yushkevich, V.F., Zh. Fizich. Khim. (1963), 37, p. 903; Maksimova, I.N., Yushkevich, V.F., Zh Fizich. Khim. (1963), 37, p. 1859; Maksimova, I.N., Yushkevich, V.F., Elektrokhimiay. (1966), 2, p. 577; Maksimova, I.N., Pravdin, N.N., Razuvaev, V.E., Sergeev, S.V., Fedotov, N.V., (1976), pp. 3366-3376. , Deposit VINITI USSR; Mangold, K., Franck, E.U., Ber. Bunsenges. Phys. Chem. (1969), 73, p. 21; Marshall, W.L., J. Chem. Phys. (1987), 87, p. 3639; Marshall, W.L., Frantz, J.D., (1987), In G.C. Ulmer and H.L. Barnes (eds), Hydrothermal Experimental Techniques, Chapter 11, Wiley-Interscience Pub., New York; Melcher, B.A.C., J. Am. Chem. Soc. (1910), 32, p. 50; Mendez De Leo, L., Wood, R.H., J. Phys. Chem. B (2005), 109, p. 14243; Muccitelli, J.A., Diangelo, N.A., J. Chem. Eng. Data (1994), 39, p. 131; Noyes, A.A., Coolidge, W.D., Z. Phys. Chem. (1903), 46, p. 323; Noyes, A.A., Coolidge, W.D., J. Amer. Chem. Soc. (1904), 26, p. 134; Noyes, A.A., Coolidge, W.D., Melcher, A.C., Cooper, H.C., Kato, Y., (1907), Carnegie Institution of Washington, D.C., USA, Publication No. 63; Noyes, A.A., Melcher, A.C., Cooper, H.C., Eastman, G.W., Kato, Y., J. Amer. Chem. Soc. (1908), 30, p. 335; Noyes, A.A., Melcher, A.C., Cooper, Eastman, G.W., Z. Phys. Chem. (1910), 70, p. 335; Noyes, A.A., Kato, Y., Sosman, R.B., J. Amer. Chem. Soc. (1910), 32, p. 159; Oelkers, E.H., Helgeson, H.C., Geochim. Cosmochim. Acta (1993), 57, p. 2673; Onsager, L., Phys. Zeit. (1927), 28, p. 277; Pearson, D., Copeland, C.S., Benson, S.W., J. Am. Chem. Soc. (1963), 85, p. 1044; Pearson, D., Copeland, C.S., Benson, S.W., J. Am. Chem. Soc. (1963), 85, p. 1047; Pitts, E., Proc. Roy. Soc. (1953), 217 A, p. 41; Polyakov, E.A., Priklad. Geofizika (1965), 41, p. 163; Quist, A.S., J. Phys. Chem. (1970), 74, p. 3396; Quist, A.S., Franck, E.U., Jolley, H.R., Marshall, W.L., J. Phys. Chem. (1963), 67, p. 2453; Quist, A.S., Marshall, W.L., J. Phys. Chem. (1966), 70, p. 3714; Quist, A.S., Marshall, W.L., J. Phys. Chem. (1968), 72, p. 684; Quist, A.S., Marshall, W.L., J. Phys. Chem. (1968), 72, p. 1545; Quist, A.S., Marshall, W.L., J. Phys. Chem. (1968), 72, p. 2100; Quist, A.S., Marshall, W.L., J. Phys. Chem. (1968), 72, p. 3122; Quist, A.S., Marshall, W.L., J. Phys. Chem. (1969), 73, p. 978; Quist, A.S., Marshall, W.L., J. Chem. Eng. Data (1970), 15, p. 375; Quist, A.S., Marshall, W.L., Jolley, H.R., J. Phys. Chem. (1965), 69, p. 2726; Quist, A.S., Marshall, W.L., Franck, E.U., Von Osten, W., J. Phys. Chem. (1970), 74, p. 2241; Read, A.J., J. Phys. E: Sci. Instrum. (1973), 6, p. 694; Read, A.J., J. Solution Chem. (1975), 4, p. 53; Read, A.J., J. Solution Chem. (1981), 10, p. 437; Read, A.J., J. Solution Chem. (1982), 11, p. 649; Read, A.J., J. Solution Chem. (1988), 17, p. 213; Renkert, H., Franck, E.U., Ber. Bunsenges. Phys. Chem. (1970), 74, p. 40; Ritzert, G., Franck, E.U., Ber. Bunsenges. Phys. Chem. (1968), 72, p. 798; Robinson, R.A., Stokes, R.H., Electrolyte Solutions (1965), 2nd edn. Butterworth, London; Rodnanskii, I.M., Galinker, I.S., Dokl. Akad. Nauk. SSSR (1955), 105, p. 115; Ryzhenko, B.N., Geokhimiya (1963), 2, p. 137; Ryzhenko, B.N., Geokhimiya (1965), 3, p. 273; Ryzhenko, B.N., Geokhimiya (1967), 2, p. 161; Ryzhenko, B.N., Naumov, G.B., Goglev, V.S., Geokhimiya (1967), 4, p. 413; Sharygin, A.C., Mokbel, I., Xiao, C., Wood, R.H., J. Phys. Chem. B (2001), 105, p. 229; Sharygin, A.V., Wood, R.H., Zimmerman, G.H., Balashov, V.N., J. Phys. Chem. B (2002), 106, p. 7121; Sharygin, A.V., Grafton, B.K., Xiao, C., Wood, R.H., Balashov, V.N., Geochim. Cosmochim. Acta (2006), 70, p. 5169; Shedlovsky, T., J. Franklin Institute (1938), 225, p. 739; Sheynin, R.A., (1980), Dissertation. All-Union Heat Engineering Institute (VTI), Moscow, USSR; Smolyakov, B.S., (1969), p. 262. , In Hortth, A.L. (ed), Handbook of Aqueous Electrolyte Solutions. Ellis Horwood, Chichester, 1969; Spiro, M., (1984), In B.W. Rossiter and J.F. Hamilton (eds), Physical Methods of Chemistry, Interscience, New York, Chap. 3; Turq, P., Blum, L., Bernard, O., Kunz, W., J. Phys. Chem. (1995), 99, p. 822; Valyashko, V.M., Ber. Bunsenges. Phys. Chem. (1977), 81, p. 388; Valyashko, V.M., Ivanov, A.A., Zh. Neorgan. Khim. (1979), 24, p. 2752; Valyashko, V.M., Pure. Appl. Chem. (1990), 62, p. 2129; Valyashko, V.M., (2000), pp. 727-735. , In P.R. Tremaine, P.G. Hill, D.E. Irish and P.V. Balakrishnan (eds), Steam, Water, and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry. ,NRC Preasearch Press, Ottawa; White Jr., H.J., Sengers, J.V., Neumann, D.B., Bellows, J.C., Physical Chemistry of Aqueous Systems: Meeting the Needs of Industry, Proceedings of the 12th International Conference on the properties of Water and Steam (1995), (eds), Begell House, New York; Wright, J.M., Lindsay Jr., W.T., Druga, T.R., (1961), Tech. Report WAPD-TM-204. Bettis Atomic Power Lab; Wu, Y.C., Koch, W.F., J. Solution Chem. (1991), 20, p. 391; Xiao, C., Wood, R.H., J. Phys. Chem. B (2000), 104, p. 918; Yeatts, L.B., Marshall, W.L., J. Phys. Chem. (1972), 76, p. 1053; Yushkevich, G.H., Maksimova, I.N., Bullan, V.G., Elektrokhimiya (1967), 3, p. 1491; Zimmerman, G.H., Wood, R.H., J. Solution Chem. (2002), 31, p. 995; Zimmerman, G.H., Gruszkiewicz, M.S., Wood, R.H., J. Phys. Chem. (1995), 99, p. 11612; Zimmerman, G.H., Scott, P.W., Wood, R.H., J. Solution Chem. (2007), 36, p. 767

Citas:

---------- APA ----------
(2008) . Electrical Conductivity in Hydrothermal Binary and Ternary Systems. Hydrothermal Experimental Data, 207-226.
http://dx.doi.org/10.1002/9780470094679.ch4
---------- CHICAGO ----------
Corti, H.R. "Electrical Conductivity in Hydrothermal Binary and Ternary Systems" . Hydrothermal Experimental Data (2008) : 207-226.
http://dx.doi.org/10.1002/9780470094679.ch4
---------- MLA ----------
Corti, H.R. "Electrical Conductivity in Hydrothermal Binary and Ternary Systems" . Hydrothermal Experimental Data, 2008, pp. 207-226.
http://dx.doi.org/10.1002/9780470094679.ch4
---------- VANCOUVER ----------
Corti, H.R. Electrical Conductivity in Hydrothermal Binary and Ternary Systems. Hydrothermal Exp. Data. 2008:207-226.
http://dx.doi.org/10.1002/9780470094679.ch4