Parte de libro

Ribba, L.; Garcia, N.L.; D'Accorso, N.; Goyanes, S. "Disadvantages of Starch-Based Materials, Feasible Alternatives in Order to Overcome These Limitations" (2017) Starch-Based Materials in Food Packaging: Processing, Characterization and Applications:37-76
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

It is well known that starch-based materials are hydrophilic and water-soluble. Even though, water solubility raises degradability and increases degradation speed; this moisture sensitivity limits their industrial applications. Thus, in this chapter the main disadvantages of starch-based materials are well described, especially those related to their poor mechanical behavior and high water vapor permeability. Within this context, several options to solve these drawbacks are also introduced in order to widespread their industrial and commercial applications. © 2017 Elsevier Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:Disadvantages of Starch-Based Materials, Feasible Alternatives in Order to Overcome These Limitations
Autor:Ribba, L.; Garcia, N.L.; D'Accorso, N.; Goyanes, S.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales (FCEyN), Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:Hydrophilic; Mechanical properties; Processability; Solubility; Starch; WVP; Hydrophilicity; Mechanical properties; Solubility; Starch; Commercial applications; Feasible alternatives; Hydrophilic; Mechanical behavior; Moisture sensitivity; Processability; Starch-based materials; Water solubilities; Mechanical permeability
Año:2017
Página de inicio:37
Página de fin:76
DOI: http://dx.doi.org/10.1016/B978-0-12-809439-6.00003-0
Título revista:Starch-Based Materials in Food Packaging: Processing, Characterization and Applications
Título revista abreviado:Starch-Based Mater. in Food Packag.: Process., Charact. and Appl.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97801281_v_n_p37_Ribba

Referencias:

  • An, H.J., King, J.M., Using ozonation and amino acids to change pasting properties of rice starch (2009) Journal of Food Science, 74 (3), pp. C278-C283
  • Auh, J.H., Chae, H.Y., Kim, Y.R., Shim, K.H., Yoo, S.H., Park, K.H., Modification of rice starch by selective degradation of amylose using alkalophilic Bacillus cyclomaltodextrinase (2006) Journal of Agricultural Food Chemistry, 54 (6), pp. 2314-2319
  • Averous, L., Fringant, C., Association between plasticized starch and polyesters: Processing and performances of injected biodegradable systems (2001) Polymer Engineering & Science, 41 (5), pp. 727-734
  • Averous, L., Moro, L., Dole, P., Fringant, C., Properties of thermoplastic blends: Starch-polycaprolactone (2000) Polymer, 41 (11), pp. 4157-4167
  • Babaee, M., Jonoobi, M., Hamzeh, Y., Ashori, A., Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers (2015) Carbohydrate Polymers, 132, pp. 1-8
  • Bercini Martins, A., Campomanes Santana, R.M., Effect of carboxylic acids as compatibilizer agent on mechanical properties of thermoplastic starch and polypropylene blends (2016) Carbohydrate Polymers, 135, pp. 79-85
  • Bertolini, A.C., Souza, E., Nelson, J.E., Huber, K.C., Composition and reactivity of A- and B-type starch granules of normal, partial waxy, and waxy wheat (2003) Cereal Chemistry, 80 (5), pp. 544-549
  • Bertuzzi, M.A., Castro Vidaurre, E.F., Armada, M., Gottifredi, J.C., Water vapor permeability of edible starch based films (2007) Journal of Food Engineering, 80 (3), pp. 972-978
  • Bodirlau, R., Teaca, C.A., Spiridon, J., Influence of natural fillers on the properties of starch-based biocomposite films (2013) Composites: Part B, 44 (1), pp. 575-583
  • Bof, M.J., Bordagaray, V.C., Locaso, D.E., García, M.A., Chitosan molecular weight effect on starch-composite film properties (2015) Food Hydrocolloids, 51, pp. 281-294
  • Bonacucina, G., Di Martino, P., Piombetti, M., Colombo, A., Roversi, F., Palmieri, G.F., Effect of plasticizers on properties of pregelatinised starch acetate (Amprac 01) free films (2006) International Journal of Pharmaceutics, 313 (1-2), pp. 72-77
  • Buleón, A., Colonna, P., Planchot, V., Ball, S., Starch granules: Structure and biosynthesis (1998) International Journal of Biological Macromolecules, 23 (2), pp. 85-112
  • Cano, A., Fortunati, E., Cháfer, M., Kenny, J.M., Chiralt, A., González-Martínez, C., Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol) (2015) Food Hydrocolloids, 48, pp. 84-93
  • Chakraborty, S., Sahoo, B., Teraoka, I., Miller, L.M., Gross, R.A., Enzyme-catalyzed regioselective modification of starch nanoparticles (2005) Macromolecules, 38 (1), pp. 61-68
  • Chaleat, C.M., Halley, P.J., Truss, R.W., Properties of a plasticised starch blend. Part 1: Influence of moisture content on fracture properties (2008) Carbohydrate Polymers, 71 (4), pp. 535-543
  • Chan, H.T., Bhat, R., Karim, A.A., Physicochemical and functional properties of ozone-oxidized starch (2009) Journal of Agricultural and Food Chemistry, 57 (13), pp. 5965-5970
  • Chang, Y.P., Cheah, P.B., Seow, C.C., Plasticizing-antiplasticizing effects of water on physical properties of tapioca starch films in the glassy state (2000) Journal of Food Science, 65 (3), p. 2000
  • Che, L., Li, D., Wang, L., Chen, X.D., Mao, Z., Micronization and hydrophobic modification of cassava starch (2007) International Journal of Food Properties, 10 (3), pp. 527-536
  • Chen, Y., Liu, C., Chang, P.R., Cao, X., Anderson, D.P., Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: Effect of hydrolysis time (2009) Carbohydrate Polymers, 76 (4), pp. 607-615
  • Cheviron, P., Gouanvé, F., Espuche, E., Starch/silver nanocomposite: Effect of thermal treatment temperature on the morphology, oxygen and water transport properties (2015) Carbohydrate Polymers, 134, pp. 635-645
  • Chun, S.Y., Yoo, B., Effect of molar substitution on rheological properties of hydroxypropylated rice starch pastes (2007) Starch, 59 (7), pp. 334-341
  • Colla, E., Sobral, P.J., Menegalli, F.C., Amaranthus cruentus flour edible films: Influence of stearic acid addition, plasticizer concentration and emulsion stirring speed on water vapor permeability and mechanical properties (2006) Journal of Agricultural and Food Chemistry, 54 (18), pp. 6645-6653
  • Copeland, L., Blazek, J., Salman, H., Tang, M.C., Form and functionality of starch (2009) Food Hydrocolloids, 23 (6), pp. 1527-1534
  • Costanzo, G., Ribba, L., Goyanes, S., Ledesma, S., Enhancement of the optical response in a biodegradable polymer/azo-dye film by the addition of carbon nanotubes (2014) Journal of Physics D: Applied Physics, 47 (13), p. 135103
  • Da Roz, A.L., Carvalho, A.J.F., Gandini, A., Curvelo, A.A.S., The effect of plasticizers on thermoplastic starch compositions obtained by melt processing (2006) Carbohydrate Polymers, 63 (3), pp. 417-424
  • da Silva, J., Pereira, F.V., Druzian, J.I., Cassava starch-based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals (2012) Journal of Food Science, 77 (6), pp. N14-N19
  • Dai, H., Chang, P.R., Yu, J., Ma, X., N, N-Bis(2-hydroxyethyl) formamide as a new plasticizer for thermoplastic starch (2008) Starch, 60 (12), pp. 676-684
  • Dai, L., Qiu, C., Xiong, L., Sun, Q., Characterisation of corn starch-based films reinforced with taro starch nanoparticles (2015) Food Chemistry, 174, pp. 82-88
  • Dang, K.M., Yoksan, R., Development of thermoplastic starch blown film by incorporating plasticized chitosan (2015) Carbohydrate Polymers, 115, pp. 575-581
  • Datsyuk, V., Landois, P., Fitremann, J., Peigney, A., Galibert, A.M., Soula, B., Flahaut, E., Double-walled carbon nanotube dispersion viasurfactant substitution (2009) Journal of Materials Chemistry, 19, pp. 2729-2736
  • Davis, J.P., Supatcharee, N., Khandelwal, R.L., Chibbar, R.N., Synthesis of novel starches in planta: Opportunities and challenges (2003) Starch, 55 (3-4), pp. 107-120
  • Debeaufort, F., Quezada-Gallo, J.A., Delporte, B., Voilley, A., Lipid hydrophobicity and physical state effects on the properties of bilayer edible films (2000) Journal of Membrane Science, 180 (1), pp. 47-55
  • Deetae, P., Shobsngob, S., Varanyanond, W., Chinachoti, P., Naivikul, O., Varavinit, S., Preparation, pasting properties and freeze-thaw stability of dual modified crosslink-phosphorylated rice starch (2008) Carbohydrate Polymers, 73 (2), pp. 351-358
  • Dias, A.B., Müller, C.M.O., Larotonda, F.D.S., Laurindo, J.B., Mechanical and barrier properties of composite films based on rice flour and cellulose fibers (2011) LWT-Food Science and Technology, 44 (2), pp. 535-542
  • Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Mechanical properties of tapioca-starch edible films containing sorbates (2005) LWT-Food Science and Technology, 38 (6), pp. 631-639
  • Famá, L., Bittante, A.M.B.Q., Sobral, P.J.A., Goyanes, S., Gerschenson, L.N., Garlic powder and wheat bran as fillers: Their effect on the physicochemical properties of edible biocomposites (2010) Materials Science and Engineering: C, 30 (6), pp. 853-859
  • Famá, L., Gañan Rojo, P., Bernal, C., Goyanes, S., Biodegradable starch based nanocomposites with low water vapor permeability and high storage modulus (2012) Carbohydrate Polymers, 87 (3), pp. 1989-1993
  • Famá, L.M., Pettarin, V., Goyanes, S., Bernal, C.R., Starch/multi-walled carbon nanotubes composites with improved mechanical properties (2011) Carbohydrate Polymers, 83 (3), pp. 1226-1231
  • Famá, L.M., Gañan, P., Bernal, C.R., Goyanes, S., Biodegradable starch nanocomposites with low water vapor permeability and high storage modulus (2012) Carbohydrate Polymers, 87 (3), pp. 1989-1993
  • Fang, J., Chen, H., Wen, B., Studies on the preparation of caramel pigment by microwave irradiation (2006) China Condiment, 12, p. 009
  • Flores, S., Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Physical properties of tapioca-starch edible films: Influence of filmmaking and potassium sorbate (2007) Food Research International, 40 (2), pp. 257-265
  • Fu, Z., Wang, L., Li, D., Wei, Q., Adhikari, B., Effects of high pressure homogenization on the properties of starch-plasticizer dispersions and their films (2011) Carbohydrate Polymers, 86 (1), pp. 202-207
  • Garcia de Rodriguez, N., Thielemans, W., Dufresne, A., Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites (2006) Cellulose, 13 (3), pp. 261-270
  • García, M.A., Martino, M.N., Zaritzky, N.E., Lipid addition to improve barrier properties of edible starch-based films and coatings (2000) Journal of Food Science, 65 (6), pp. 941-944
  • García, N.L., Famá, L., Dufresne, A., Aranguren, M., Goyanes, S., A comparison between the physico-chemical properties of tuber and cereal starches (2009) Food Research International, 42 (8), pp. 976-982
  • Garca, N.L., Ribba, L., Dufresne, A., Aranguren, M., Goyanes, S., Physico-mechanical properties of biodegradable starch nanocomposites (2009) Macromolecular Materials and Engineering, 294 (3), pp. 169-177
  • García, N.L., Ribba, L., Dufresne, A., Aranguren, M., Goyanes, S., Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals (2011) Carbohydrate Polymers, 84 (1), pp. 203-210
  • García, N.L., Famá, L., D'Accorso, N.B., Goyanes, S., Biodegradable starch nanocomposites (2015) Eco-friendly Polymer Nanocomposites, pp. 17-77. , Springer, New Delhi, India, V. Kumar Thakur, M. Kumari Thakur (Eds.)
  • Gaudin, S., Lourdin, D., Forssell, P.M., Colonna, P., Antiplasticisation and oxygen permeability of starch-sorbitol films (2000) Carbohydrate Polymers, 43 (1), pp. 33-37
  • Ghanbarzadeh, B., Almasi, H., Entezami, A.A., Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose (2011) Industrial Crops and Products, 33 (1), pp. 229-235
  • Ghasemlou, M., Aliheidari, N., Fahmi, R., Shojaee-Aliabadi, S., Keshavarz, B., Cran, M.J., Khaksar, R., Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils (2013) Carbohydrate Polymers, 98 (1), pp. 1117-1126
  • Gilfillan, W.N., Doherty, W.O., Starch composites with aconitic acid (2016) Carbohydrate Polymers, 141, pp. 60-67
  • Gilfillan, W.N., Moghaddam, L., Bartley, J., Doherty, W.O.S., Thermal extrusion of starch film with alcohol (2016) Journal of Food Engineering, 170, pp. 92-99
  • Godbillot, L., Dole, P., Joly, C., Rogé, B., Mathlouthi, M., Analysis of water binding in starch plasticized films (2006) Food Chemistry, 96 (3), pp. 380-386
  • González, R., Carrara, C., Tosi, E., Añón, M.C., Pilosof, A., Amaranth starch-rich fraction properties modified by extrusion and fluidized bed heating (2007) LWT-Food Science and Technology, 40 (1), pp. 136-143
  • González Seligra, P., Medina Jaramillo, C., Famá, L., Goyanes, S., Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent (2016) Carbohydrate Polymers, 138, pp. 66-74
  • Gou, Z., Xu, D., Dong, Q., Wu, X., Comparison studies on covalently and non-covalently modified MWNTs using chitosan and their starch nanocomposites (2015) Starch
  • Guarás, M.P., Alvarez, V.A., Ludueña, L.N., Processing and characterization of thermoplastic starch/polycaprolactone/compatibilizer ternary blends for packaging applications (2015) Journal of Polymer Research, 22 (9), pp. 1-12
  • Gutiérrez, T.J., Pérez, E., Guzmán, R., Tapia, M.S., Famá, L., Physicochemical and functional properties of native and modified by crosslinking, dark-cush-cush yam (Dioscorea trifida) and cassava (Manihot esculenta) starch (2014) Journal of Polymer and Biopolymer Physics Chemistry, 2 (1), pp. 1-5
  • Gutiérrez, T.J., Tapia, M.S., Perez, E.S., Famá, L., Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch (2015) Food Hydrocolloids, 45, pp. 211-217
  • Haaj, S.B., Thielemans, W., Magnin, A., Boufi, L., Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement: A comparative study (2016) Carbohydrate Polymers, 143, pp. 310-317
  • Hajar Othman, S., Bio-nanocomposite materials for food packaging applications: Types of biopolymer and nano-sized filler (2014) Agriculture and Agricultural Science Procedia, 2, pp. 296-303
  • Han, J.H., Scanlon, M.G., Mass transfer of gas and solute through packaging materials (2005) Innovations in Food Packaging, pp. 12-23. , Elsevier Academic Press, Oxford
  • Hirsch, J.B., Kokini, J.L., Understanding the mechanism of cross-linking agents (POCl3, STMP and EPI) through swelling behaviour and pasting properties of cross-linked waxy maize starches (2002) Cereal Chemistry, 79 (1), pp. 102-107
  • Hoover, R., Hughes, T., Chung, H.J., Liu, Q., Composition, molecular structure, properties, and modification of pulse starches: A review (2010) Food Research International, 43 (2), pp. 399-413
  • Huang, C.Y., Roan, M.L., Kuo, M.C., Lu, W.L., Effect of compatibiliser on the biodegradation and mechanical properties of high-content starch/low-density polyethylene blends (2005) Polymer Degradation and Stability, 90 (1), pp. 95-105
  • Huang, M., Yu, J., Ma, X., High mechanical performance MMT-urea and formamide-plasticized thermoplastic cornstarch biodegradable nanocomposites (2006) Carbohydrate Polymers, 63 (3), pp. 393-399
  • Huang, Z.Q., Lu, J.P., Li, X.H., Tong, Z.F., Effect of mechanical activation on physico-chemical properties and structure of cassava starch (2007) Carbohydrate Polymers, 68 (1), pp. 128-135
  • Hulleman, S.H.D., Janssen, F.H.P., Feil, H., The role of water during plasticization of native starches (1998) Polymer, 39 (10), pp. 2043-2048
  • Huo, W., Xie, G., Zhang, W., Wang, W., Shan, J., Liu, H., Zhou, X., Preparation of a novel chitosan-microcapsules/starch blend film and the study of its drug-release mechanism (2016) International Journal of Biological Macromolecules, 87, pp. 114-122
  • Jane, J., Structure of starch granules (2007) Journal of Applied Glycoscience, 54 (1), pp. 31-36
  • Jiang, S., Liu, C., Wang, X., Xiong, L., Sun, Q., Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch nanoparticles (2016) LWT-Food Science and Technology, 69, pp. 251-257
  • Jiménez, A., Fabra, M.J., Talens, P., Chiralt, A., Edible and biodegradable starch films: A review (2012) Food and Bioprocess Technology, 5 (6), pp. 2058-2076
  • Jobling, S.A., Schwall, G.P., Westcott, R.J., Sidebottom, C.M., Debet, M., Gidley, M.J., Jeffcoat, R., A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterisation of multiple forms of SBE A (1999) The Plant Journal, 18 (2), pp. 163-171
  • Johnson, L.A., Baumel, C.P., Hardy, C.L., White, P.J., (1999) Identifying valuable corn quality traits for starch production, , http://www.extension.iastate.edu/Publications/EDC194.pdf, Iowa State University Extension, Ames, Available online
  • Jonoobi, M., Mathew, A.P., Abdi, M.M., Davoodi Makinejad, M., Oksman, K., A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion (2012) Journal of Polymers and the Environment, 20 (4), pp. 991-997
  • Jose, J., De, S.K., AlMa'adeed, M.A.A., Dakua, J.B., Sreekumar, P.A., Sougrat, R., Al-Harthi, M.A., Compatibilizing role of carbon nanotubes in poly(vinyl alcohol)/starch blend (2015) Starch, 67, pp. 147-153
  • Jyothi, A.N., Rajasekharan, K.N., Moorthy, S.N., Sreekumar, J., Microwave-assisted synthesis and characterization of succinate derivatives of cassava (Manihot esculenta Crantz) starch (2005) Starch, 57 (11), pp. 556-563
  • Kampeerapappun, P., Aht-ong, D., Pentrakoon, D., Srikulkit, K., Preparation of cassava starch/montmorillonite composite film (2007) Carbohydrate Polymers, 67 (2), pp. 155-163
  • Karim, A.A., Sufha, E.H., Zaidul, I.S.M., Dual modification of starch via partial enzymatic hydrolysis in the granular state and subsequent hydroxypropylation (2008) Journal of Agricultural and Food Chemistry, 56 (22), pp. 10901-10907
  • Karimi, S., Tahir, P., Dufresne, A., Karimi, A., Abdulkhani, A., A comparative study on characteristics of nanocellulose reinforced thermoplastic starch biofilms prepared with different techniques (2014) Nordic Pulp & Paper Research Journal, 29 (1), pp. 41-45
  • Kaseem, M., Hamad, K., Deri, F., Thermoplastic starch blends: A review of recent works (2012) Polymer Science Series A, 54 (2), pp. 165-176
  • Kim, C.H., Cho, K.Y., Park, J.K., Reactive blends of gelatinized starch and polycaprolactone-g-glycidyl methacrylate (2001) Journal of Applied Polymer Science, 81 (6), pp. 1507-1516
  • Kim, H.S., Huber, K.C., Channels within soft wheat starch A-and B-type granules (2008) Journal of Cereal Science, 48 (1), pp. 159-172
  • Kim, J.Y., Choi, Y.G., Kim, S.R.B., Lim, S.T., Humidity stability of tapioca starch-pullulan composite films (2014) Food Hydrocolloids, 41, pp. 140-145
  • Kim, M., Lee, S.J., Characteristics of crosslinked potato starch and starch-filled linear low-density polyethylene films (2002) Carbohydrate Polymers, 50 (4), pp. 331-337
  • Kudus, M.H.A., Akil, H.M., Mohamad, H., Loon, L.E., Effect of catalyst calcination temperature on the synthesis of MWCNT-alumina hybrid compound using methane decomposition method (2011) Journal of Alloys and Compounds, 509 (6), pp. 2784-2788
  • Kuorwel, K.K., Cran, M.J., Sonneveld, K., Miltz, J., Bigger, S.W., Water sorption and physicomechanical properties of corn starch-based films (2013) Journal of Applied Polymer Science, 128 (1), pp. 530-536
  • Lafargue, D., Pontoire, B., Buléon, A., Doublier, J.L., Lourdin, D., Structure and mechanical properties of hydroxypropylated starch films (2007) Biomacromolecules, 8 (12), pp. 3950-3958
  • Lamanna, M., Morales, N.J., García, N.L., Goyanes, S., Development and characterization of starch nanoparticles by gamma radiation: Potential application as starch matrix filler (2013) Carbohydrate Polymers, 97 (1), pp. 90-97
  • Lewandowicz, G., Soral-Smietana, M., Starch modification by iterated syneresis (2004) Carbohydrate Polymers, 56 (4), pp. 403-413
  • Li, J.M., Zhang, L.M., Characteristics of novel starch-based hydrogels prepared by UV photopolymerization of acryloylated starch and A zwitterionic monomer (2007) Starch, 59 (9), pp. 418-422
  • Li, M., Xie, F., Hasjim, J., Witt, T., Halley, P.J., Gilbert, R.G., Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline (2015) Carbohydrate Polymers, 117, pp. 262-270
  • Li, X., Qiu, C., Ji, N., Sun, C., Xiong, L., Sun, Q., Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films (2015) Carbohydrate Polymers, 121, pp. 155-162
  • Liu, Q., Understanding starches and their role in foods (2005) Food Carbohydrates: Chemistry, Physical Properties, and Applications, pp. 309-349. , CRC Press, Boca Raton
  • Liu, X., Yu, L., Liu, H., Chen, L., Li, L., In situ thermal decomposition of starch with constant moisture in a sealed system (2008) Polymer Degradation and Stability, 93 (1), pp. 260-262
  • Liu, H., Xie, F., Yu, L., Chen, L., Li, L., Thermal processing of starch-based polymers (2009) Progress in Polymer Science, 34 (12), pp. 1348-1368
  • Liu, C., Zhang, Y., Liu, W., Wan, J., Wang, W., Wu, L., Yin, Z., Preparation, physicochemical and texture properties of texturized rice produce by Improved Extrusion Cooking Technology (2011) Journal of Cereal Science, 54 (3), pp. 473-480
  • Liu, H., Chaudhary, D., Yusa, S., Tadé, M.O., Glycerol/starch/Na+-montmorillonite nanocomposites: a XRD, FTIR, DSC and 1H NMR study (2011) Carbohydrate Polymers, 83 (4), pp. 1591-1597
  • López, O.V., García, M.A., Zaritzky, N.E., Film forming capacity of chemically modified corn starches (2008) Carbohydrate Polymers, 73 (4), pp. 573-581
  • López, O.V., Zaritzky, N.E., Grossmann, M.V.E., García, M.A., Acetylated and native corn starch blend films produced by blown extrusion (2013) Journal of Food Engineering, 116 (2), pp. 286-297
  • López, O., Ninago, M., Lencina, M., García, M.A., Andreucetti, N., Ciolino, A., Villar, M., Thermoplastic starch plasticized with alginate-glycerol mixtures: Melt-processing evaluation and film properties (2015) Carbohydrate Polymers, 126, pp. 83-90
  • Lourdin, D., Della Valle, G., Colonna, P., Influence of amylose content on starch films and foams (1995) Carbohydrate Polymers, 27 (4), pp. 261-270
  • Lourdin, D., Bizot, H., Colonna, P., "Antiplasticization" in starch-glycerol films (1997) Journal of Applied Polymer Science, 63 (8), pp. 1047-1053. , http://dx.doi.org/10.1002/(SICI)1097-4628(19970222)63:81047::AID-APP113.0.CO;2-3
  • Lv, S., Gu, J., Cao, J., Tan, H., Zhang, Y., Effect of annealing on the thermal properties of poly (lactic acid)/starch blends (2015) International Journal of Biological Macromolecules, 74, pp. 297-303
  • Ma, X.F., Yu, J.G., Wang, N., Fly ash reinforced thermoplastic starch composites (2007) Carbohydrate Polymers, 67 (1), pp. 32-39
  • Ma, X.F., Yu, J.G., The plasticized containing amide groups for thermoplastic starch (2004) Carbohydrate Polymers, 57 (2), pp. 197-203
  • Ma, P., Xu, P., Chen, M., Dong, W., Cai, X., Schmit, P., Lemstra, P.J., Structure-property relationships of reactively compatibilized PHB/EVA/starch blends (2014) Carbohydrate Polymers, 108, pp. 299-306
  • Maache-Rezzoug, Z., Maugard, T., Zarguili, I., Bezzine, E., El Marzouki, M.-N., Loisel, C., Effect of instantaneous controlled pressure drop (DIC) on physicochemical properties of wheat, waxy and standard maize starches (2009) Journal of Cereal Science, 49 (3), pp. 346-353
  • Mahieu, A., Terrié, C., Youssef, B., Thermoplastic starch films and thermoplastic starch/polycaprolactone blends with oxygen-scavenging properties: Influence of water content (2015) Industrial Crops and Products, 72, pp. 192-199
  • Mali, S., Grossmann, M.V.E., Garcia, M.A., Martino, M.N., Zaritzky, N.E., Microstructural characterization of yam starch films (2002) Carbohydrate Polymers, 50 (4), pp. 379-386
  • Mali, S., Sakanaka, L.S., Yamashita, F., Grossmann, M.V.E., Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect (2005) Carbohydrate Polymers, 60 (3), pp. 283-289
  • Mali, S., Grossmann, M.V.E., García, M.A., Martino, M.N., Zaritzky, N.E., Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources (2006) Journal of Food Engineering, 75 (4), pp. 453-460
  • Mali, S., Grossmann, M.V.E., García, M.A., Martino, M.N., Zaritzky, N.E., Antiplasticizing effect of glycerol and sorbitol on the properties of cassava starch films (2008) Brazilian Journal of Food Technology, 11 (3), pp. 194-200
  • Mathew, A.P., Dufresne, A., Plasticized waxy maize starch: Effect of polyols and relative humidity on material properties (2002) Biomacromolecules, 3 (5), pp. 1101-1108
  • Mehyar, G.F., Han, J.H., Physical and mechanical properties of high-amylose rice and pea starch films as affected by relative humidity and plasticizer (2004) Journal of Food Science, 69 (9), pp. E449-E454
  • Menzel, C., Andersson, M., Andersson, R., Vázquez-Gutiérrez, J.L., Daniel, G., Langton, M., Koch, M., Improved material properties of solution-cast starch films: Effect of varying amylopectin structure and amylose content of starch from genetically modified potatoes (2015) Carbohydrate Polymers, 130, pp. 388-397
  • Morales, N.J., Candal, R., Famá, L., Goyanes, S., Rubiolo, G.H., Improving the physical properties of starch using a new kind of waterdispersible nano-hybrid reinforcement (2015) Carbohydrate Polymers, 127, pp. 291-299
  • Muller, C.M.C., Laurindo, J.B., Yamashita, F., Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch based films (2009) Food Hydrocolloid, 23 (5), pp. 1328-1333
  • Myllärinen, P., Partanen, R., Seppälä, J., Forssell, P., Effect of glycerol on behaviour of amylose and amylopectin films (2002) Carbohydrate Polymers, 50 (4), pp. 355-361
  • Ninago, M.D., López, O.V., Lencina, M.M.S., García, M.A., Andreucetti, N.A., Ciolino, A.E., Villar, M.A., Enhancement of thermoplastic starch final properties by blending with poly(ε-caprolactone) (2015) Carbohydrate Polymers, 134, pp. 205-212
  • Ortega-Toro, R., Contreras, J., Talens, P., Chiralt, A., Physical and structural properties and thermal behaviour of starch-poly(ε-caprolactone) blend films for food packaging (2015) Food Packaging and Shelf Life, 5, pp. 10-20
  • Ortega-Toro, R., Muñoz, A., Talens, P., Chiralt, A., Improvement of properties of glycerol plasticized starch films by blending with a low ratio of polycaprolactone and/or polyethylene glycol (2016) Food Hydrocolloids, 56, pp. 9-19
  • Ou, S., Li, A., Yang, A., A study on synthesis of starch ferulate and its biological properties (2001) Food Chemistry, 74 (1), pp. 91-95
  • Pang, M.M., Pun, M.Y., Ishak, Z.A.M., Degradation studies during water absorption, aerobic biodegradation, and soil burial of biobased thermoplastic starch from agricultural waste/polypropylene blends (2013) Journal of Applied Polymer Science, 129 (6), pp. 3656-3664
  • Perdomo, J., Cova, A., Sandoval, A.J., García, L., Laredo, E., Müller, A.J., Glass transition temperatures and water sorption isotherms of cassava starch (2009) Carbohydrate Polymers, 76 (2), pp. 305-313
  • Peres, A.M., Pires, R.R., Oréfice, R.L., Evaluation of the effect of reprocessing on the structure and properties of low density polyethylene/thermoplastic starch blends (2016) Carbohydrate Polymers, 136, pp. 210-215
  • Phan The, D., Debeaufort, F., Luu, D., Voilley, A., Moisture barrier, wetting and mechanical properties of shellac/agar or shellac/cassava starch bilayer bio-membrane for food applications (2008) Journal of Membrane Science, 325 (1), pp. 277-283
  • Prakash Maran, J., Sivakumar, V., Sridhar, R., Thirugnanasambandham, K., Development of model for barrier and optical properties of tapioca starch based edible films (2013) Carbohydrate Polymers, 92 (2), pp. 1335-1347
  • Pushpadass, H.A., Marx, D.B., Hanna, M.A., Effects of extrusion temperature and plasticizers on the physical and functional properties of starch films (2008) Starch, 60 (10), pp. 527-538
  • Pushpadass, H.A., Marx, D.B., Wehling, R.L., Hanna, M.A., Extrusion and characterization of starch films (2009) Cereal Chemistry, 86 (1), pp. 44-51
  • Pushpadass, H.A., Kumar, A., Jackson, D., Wehling, R.L., Dumais, J.J., Hanna, M.A., Macromolecular changes in extruded starch-films plasticized with glycerol, water and stearic acid (2009) Starch, 61 (5), pp. 256-266
  • Pushpadass, A., Weber, R.W., Dumais, J.J., Hanna, M.A., Biodegradation characteristics of starch-polystyrene loose-fill foams in a composting medium (2010) Bioresource Technology, 101 (19), pp. 7258-7264
  • Pushpadass, H.A., Bhandaria, P., Hanna, M.A., Effects of LDPE and glycerol contents and compounding on the microstructure and properties of starch composite films (2010) Carbohydrate Polymers, 82 (4), pp. 1082-1089
  • Qiao, L., Gu, Q., Cheng, H.N.M., Enzyme-catalyzed synthesis of hydrophobically modified starch (2006) Carbohydrate Polymers, 66 (1), pp. 135-140
  • Qiu, L., Hu, F., Peng, Y., Structural and mechanical characteristics of film using modified corn starch by the same two chemical processes used in different sequences (2013) Carbohydrate Polymers, 91 (2), pp. 590-596
  • Rajan, A., Sudha, J.D., Abraham, T.E., Enzymatic modification of cassava starch by fungal lipase (2008) Industrial Crops and Products, 27 (1), pp. 50-59
  • Reddy, N., Yang, Y., Preparation and properties of starch acetate fibers for potential tissue engineering applications (2009) Biotechnology and Bioengineering, 103 (5), pp. 1016-1022
  • Romero-Bastida, C.A., Bello-Pérez, L.A., Velazquez, G., Alvarez-Ramirez, J., Effect of the addition order and amylose content on mechanical, barrier and structural properties of films made with starch and montmorillonite (2015) Carbohydrate Polymers, 127, pp. 195-201
  • Russell Gelatinisation of starches of different amylose/amylopectin content. A study by differential scanning calorimetry (1987) Journal of Cereal Science, 6 (2), pp. 133-145
  • Sabetzadeh, M., Bagheri, R., Masoomi, M., Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films (2015) Carbohydrate Polymers, 119, pp. 126-133
  • Sadhu, S.D., Soni, A., Garg, M., Thermal studies of the starch and polyvinyl alcohol based film and its nano composites (2015) Journal of Nanomedicine & Nanotechnology, 7 (2)
  • Salaberria, A.M., Diaz, R.H., Labidi, J., Fernandes, S.C.M., Role of chitin nanocrystals and nanofibers on physical, mechanical and functional properties in thermoplastic starch films (2015) Food Hydrocolloids, 46, pp. 93-102
  • Seker, M., Hanna, M.A., Sodium hydroxide and trimetaphosphate levels affect properties of starch extrudates (2006) Industrial Crops and Products, 23 (3), pp. 249-255
  • Shanks, R., Kong, I., (2012) Thermoplastic starch, pp. 95-116. , Thermoplastic Elastomers, Rijeka: InTech
  • Sherafati, M., Mousavi, S.M.A., Emam-Djomeh, Z., Bagheri, R., Evaluating the effects of different plasticizers on mechanical properties of starch/clay nanocomposites (2014) Advanced Materials Research, 829, pp. 279-283
  • Silva, I.F.E., Yamashita, F., Muller, C.M.O., Mali, S., Olivato, J.B., Bilck, A.P., Grossmann, M.V.E., How reactive extrusion with adipic acid improves the mechanical and barrier properties of starch/poly (butylene adipate-co-terephthalate) films (2013) International Journal of Food Science and Technology, 48 (8), pp. 1762-1769
  • Simkovic, I., Hricovini, M., Mendichi, R., Soest, J.J.G., Cross-linking of starch with 1,2,3,4-diepoxybutane or 1,2,7,8-diepoxyoctane (2004) Carbohydrate Polymers, 55 (3), pp. 299-305
  • Siqueira, G., Bras, J., Dufresne, A., Cellulosic bionanocomposites: A review of preparation and properties of nanocomposites (2009) Polymers, 2 (4), pp. 728-765
  • Siró, I., Plackett, D., Microfibrillated cellulose and new nanocomposite materials: A review (2010) Cellulose, 17 (3), pp. 459-494
  • Slavutsky, A.M., Armada, M., Bertuzzi, M.A., Water barrier properties of starch-clay nanocomposite films (2012) Brazilian Journal of Food Technology, 15 (3), pp. 208-218
  • Slavutsky, A.M., Bertuzzi, M.A., Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse (2014) Carbohydrate Polymers, 110, pp. 53-61
  • Slavutsky, A.M., Bertuzzi, M.A., Improvement of water barrier properties of starch films by lipid nanolamination (2016) Food Packaging and Shelf Life, 7, pp. 41-46
  • Souza, R.C.R., Andrade, C.T., Investigation of the gelatinization and extrusion processes of corn starch (2002) Advances in Polymer Technology, 21 (1), pp. 17-24
  • Sreedhar, B., Sairam, M., Chattopadhyay, D.K., Syamala Rathnam, P.A., Mohan Rao, D.V., Thermal, mechanical, and surface characterization of starch-poly(vinyl alcohol) blends and borax-crosslinked films (2005) Journal of Applied Polymer Science, 96 (4), pp. 1313-1322
  • Stepto, R.F.T., The processing of starch as a thermoplastic (2003) Macromolecular Symposia, 201 (1), pp. 203-212
  • Svagan, A.J., Hedenqvist, M.S., Berglund, L., Reduced water vapour sorption in cellulose nanocomposites with starch matrix (2009) Composites Science and Technology, 69 (3-4), pp. 500-506
  • Swain, S.K., Pradhan, A.K., Sahu, H.S., Synthesis of gas barrier starch by dispersion of functionalized multiwalled carbon nanotubes (2013) Carbohydrate Polymers, 94 (1), pp. 663-668
  • Szymońska, J., Krok, F., Tomasik, P., Deep-freezing of potato starch (2000) International Journal of Biological Macromolecules, 27 (4), pp. 307-314
  • Szymońskaa, J., Krokb, F., Komorowska-Czepirskac, F., Rebilas, K., Modification of granular potato starch by multiple deep-freezing and thawing (2003) Carbohydrate Polymers, 52 (1), pp. 1-10
  • Tabassi, N., Moghbeli, M.R., Ghasemi, I., Thermoplastic starch/cellulose nanocrystal green composites prepared in an internal mixer (2016) Iranian Polymer Journal, 25 (1), pp. 45-57
  • Talja, R.A., Helén, H., Roos, Y.H., Jouppila, K., Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films (2007) Carbohydrate Polymers, 67 (3), pp. 288-295
  • Tan, L., Su, Q., Zhang, S., Huang, H., Preparing thermoplastic polyurethane/thermoplastic starch with high mechanical and biodegradable properties (2015) RSC Advances, 5 (98), pp. 80884-80892
  • Tarvainen, M., Sutinen, R., Peltonen, S., Tiihonen, P., Paronen, P., Starch acetate-A novel film-forming polymer for pharmaceutical coatings (2002) Journal of Pharmaceutical Sciences, 91 (1), pp. 282-289
  • Teodoro, A.P., Mali, S., Romero, N., Carvalho, G.M., Cassava starch films containing acetylated starch nanoparticles as reinforcement: Physical and mechanical characterization (2015) Carbohydrate Polymers, 126, pp. 9-16
  • Thiebaud, S., Aburto, J., Alric, I., Borredon, E., Bikiaris, D., Prinos, J., Panayiotou, C., Properties of fatty-acid esters of starch and their blends with LDPE (1997) Journal of Applied Polymer Science, 65 (4), pp. 705-721
  • Thunwall, M., Boldizar, A., Rigdahl, M., Compression molding and tensile properties of thermoplastic potato starch materials (2006) Biomacromolecules, 7 (3), pp. 981-986
  • Thunwall, M., Boldizar, A., Rigdahl, M., Extrusion processing of high amylose potato starch materials (2006) Carbohydrate Polymers, 65 (4), pp. 441-446
  • Van der Maarel, M.J.E.C., van der Veen, B., Uitdehaag, J.C.M., Leemhuis, H., Dijkhuizen, L., Properties and applications of starch-converting enzymes of the α-amylase family (2002) Journal of Biotechnology, 94 (2), pp. 137-155
  • Van Soest, J.J.G., Knooren, N., Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging (1997) Journal of Applyed Polymer Science, 64, pp. 1411-1422. , http://dx.doi.org/10.1002/(SICI)1097-4628(19970516)64:71411::AID-APP213.0.CO;2-Y
  • Varavinit, S., Paisanjit, W., Tukomane, T., Pukkahuta, C., Effects of osmotic pressure on the crosslinking reaction of tapioca starch (2007) Starch, 59 (6), pp. 290-296
  • Vartiainen, J., Vähä-Nissi, M., Harlin, A., Biopolymer films and coatings in packaging applications-A review of recent developments (2014) Materials Sciences and Applications, 5 (10), pp. 708-718
  • Vorwerg, W., Dijksterhuis, J., Borghuis, J., Radosta, S., Kröger, A., Film properties of hydroxypropyl starch (2004) Starch, 56 (7), pp. 297-306
  • Wang, N., Yu, J., Chang, P.R., Ma, X., Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends (2008) Carbohydrate Polymers, 71 (1), pp. 109-118
  • Wattanachant, S., Muhammad, K., Hashim, D.M., Rahman, R.A., Effect of cross-linking reagents and hydroxypropylation levels on dual-modified sago starch properties (2003) Food Chemistry, 80 (4), pp. 463-471
  • Winkler, H., Vorwer, W., Rihm, R., Thermal and mechanical properties of fatty acid starch esters (2014) Carbohydrate Polymers, 102, pp. 941-949
  • Wischmann, B., Blennow, A., Madsen, F., Jørgensen, K., Poulsen, P., Bandsholm, O., Functional characterisation of potato starch modified by specific in planta alteration of the amylopectin branching and phosphate substitution (2005) Food Hydrocolloids, 19 (6), pp. 1016-1024
  • Woggum, T., Sirivongpaisal, P., Wittaya, T., Characteristics and properties of hydroxypropylated rice starch based biodegradable films (2015) Food Hydrocolloids, 50, pp. 54-64
  • Yan, Q., Hou, H., Guo, P., Dong, H., Effects of extrusion and glycerol content on properties of oxidized and acetylated corn starch-based films (2012) Carbohydrate Polymers, 87 (1), pp. 707-712
  • Yang, J.H., Yu, J.G., Ma, X.F., Study on the properties of ethylenebisformamide and sorbitol plasticized corn starch (ESPTPS) (2006) Carbohydrate Polymers, 66 (1), pp. 110-116
  • Yu, J., Chang, P.R., Ma, X., The preparation and properties of dialdehyde starch and thermoplastic dialdehyde starch (2010) Carbohydrate Polymers, 79 (2), pp. 296-300
  • Zahedi, Y., Ghanbarzadeh, B., Sedaghat, N., Physical properties of edible emulsified films based on pistachio globulin protein and fatty acids (2010) Journal of Food Engineering, 100 (1), pp. 102-108
  • Zavareze, E.R., Guerra Dias, A.R., Impact of heat-moisture treatment and annealing in starches: A review (2011) Carbohydrate Polymers, 83 (2), pp. E317-E328. , http://dx.doi.org/10.1016/j.carbpol.2010.08.064.http://www.sciencedirect.com/science/article/pii/S0144861710007101
  • Zhang, Y., Han, J.H., Mechanical and thermal characteristics of pea starch films plasticized with monosaccharides and polyols (2006) Journal of Food Science, 71 (2), pp. E109-E118
  • Zhang, Y., Han, J.H., Sorption isotherm and plasticization effect of moisture and plasticizers in pea starch film (2008) Journal of Food Science, 73 (7), pp. E313-E324
  • Zhang, Y., Han, J.H., Crystallization of high-amylose starch by the addition of plasticizers at low and intermediate concentrations (2010) Journal of Food Science, 75 (1), pp. N8-N16
  • Zhang, Y., Liu, W., Liu, C., Luo, S., Li, T., Liu, Y., Zuo, Y., Retrogradation behaviour of high-amylose rice starch prepared by improved extrusion cooking technology (2014) Food Chemistry, 158, pp. 255-261
  • Zhang, B., Dhital, S., Flanagan, B.M., Luckman, P., Halley, P.J., Gidley, M.J., Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure (2015) Carbohydrate Polymers, 134, pp. 485-496
  • Donovan, J.W., Phase transitions of the starch-water system (1979) Biopolymers, 18 (2), pp. 263-275. , http://dx.doi.org/10.1002/bip.1979.360180204
  • Lencina, M.M.S., Iatridi, Z., Villar, M.A., Tsitsilianis, C., Thermoresponsive hydrogels from alginate-based graft copolymers (2014) European Polymer Journal, 61, pp. 33-44. , http://dx.doi.org/10.1016/j.eurpolym.2014.09.011

Citas:

---------- APA ----------
Ribba, L., Garcia, N.L., D'Accorso, N. & Goyanes, S. (2017) . Disadvantages of Starch-Based Materials, Feasible Alternatives in Order to Overcome These Limitations. Starch-Based Materials in Food Packaging: Processing, Characterization and Applications, 37-76.
http://dx.doi.org/10.1016/B978-0-12-809439-6.00003-0
---------- CHICAGO ----------
Ribba, L., Garcia, N.L., D'Accorso, N., Goyanes, S. "Disadvantages of Starch-Based Materials, Feasible Alternatives in Order to Overcome These Limitations" . Starch-Based Materials in Food Packaging: Processing, Characterization and Applications (2017) : 37-76.
http://dx.doi.org/10.1016/B978-0-12-809439-6.00003-0
---------- MLA ----------
Ribba, L., Garcia, N.L., D'Accorso, N., Goyanes, S. "Disadvantages of Starch-Based Materials, Feasible Alternatives in Order to Overcome These Limitations" . Starch-Based Materials in Food Packaging: Processing, Characterization and Applications, 2017, pp. 37-76.
http://dx.doi.org/10.1016/B978-0-12-809439-6.00003-0
---------- VANCOUVER ----------
Ribba, L., Garcia, N.L., D'Accorso, N., Goyanes, S. Disadvantages of Starch-Based Materials, Feasible Alternatives in Order to Overcome These Limitations. Starch-Based Mater. in Food Packag.: Process., Charact. and Appl. 2017:37-76.
http://dx.doi.org/10.1016/B978-0-12-809439-6.00003-0