Parte de libro

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

Food safety is a global priority and one of the major objectives of the current food legislation. The right combination of strategies for food industrialization, including the packaging step, ensures the achievement of that objective. New food products and new industrialization processes impose the need for the development of new packaging materials that ensure food protection and that address the changing demands of the food industry and consumers. The general perception of the importance of minimizing environmental damage has catalyzed the exploration of new biobased packaging materials, such as biodegradable and edible films, because they are environmentally friendly. In addition, consumer demand for more natural foods has promoted research about natural antimicrobials like natamycin and nisin.This chapter reviews the available information on antimicrobial packaging containing the natural antimicrobials natamycin and nisin simultaneously and, in particular, their antimicrobial effectiveness. According to published and new results evaluated, packaging containing natamycin and nisin is a very efficient strategy to control food contamination. In addition, the use of biodegradable materials to produce the packaging contributes to environment protection. © 2016 Elsevier Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:Combinational Approaches for Antimicrobial Packaging: Natamycin and Nisin
Autor:Jagus, R.J.; Gerschenson, L.N.; Ollé Resa, C.P.
Filiación:FI, UBA, Buenos Aires, Argentina
Institute of Technology and Engineering Sciences (INTECIN), Buenos Aires, Argentina
FCEN, UBA, Buenos Aires, Argentina
National Research Council (CONICET), Buenos Aires, Argentina
CONICET, Buenos Aires, Argentina
Palabras clave:Antimicrobial food packaging; Bacteria; Food safety; Molds and yeasts; Natamycin; Nisin
Año:2016
Página de inicio:599
Página de fin:608
DOI: http://dx.doi.org/10.1016/B978-0-12-800723-5.00049-8
Título revista:Antimicrobial Food Packaging
Título revista abreviado:Antimicrob. Food Packag.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97801280_v_n_p599_Jagus

Referencias:

  • Ahvenainen, R., (2003) Novel Food Packaging Techniques, , Elsevier, Cambridge, England
  • Al-Holy, M., Al-Nabulsi, A., Osaili, T., Ayyash, M., Shaker, R., Inactivation of Listeria innocua in brined white cheese by a combination of nisin and heat (2012) Food Control, 23, pp. 48-53
  • Amass, W., Amass, A., Tighe, B., A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies (1998) Polym. Int., 47, pp. 89-144
  • Balasubramanian, A., Rosenberg, L., Yam, K., Chikindas, M., Antimicrobial packaging: potential vs. reality-a review (2009) J. Appl. Packag. Res., 3, pp. 193-221
  • Basch, C., Carpenco, J., Jagus, R., Flores, S., Individual and combined performance of nisin and potassium sorbate supported in tapioca strach edible fims (2011) Proc. 11th. Int. Congr. Eng. Food (ICEF 11), 2, pp. 979-980
  • Basch, C., Jagus, R., Flores, S., Physical and antimicrobial properties of tapioca starch-HPMC edible films incorporated with nisin and/or potassium sorbate (2013) Food Bioprocess Technol., 6, pp. 2419-2428
  • Bauer, R., Dicks, L., Mode of action of lipid II-targeting lantibiotics (2005) Int. J. Food Microbiol., 101, pp. 201-216
  • Active, Controlled, and Intelligent Packaging for Foods and Beverages (2013), http://www.bccresearch.com/pressroom/fod/advanced-packaging-solutions-market-value-projected-nearly-$44.3-billion-2017, (accesed 30/01/2015); Breukink, E., van Kraaij, C., Demel, R., Siezen, R., Kuipers, O., de Kruijff, B., The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane (1997) Biochemistry, 36, pp. 6968-6976
  • Burke, J., Biodegradeable-compostable packaging: the promise and the problems (2006), Pap. Packag. 47; Campos, C., Gerschenson, L., Silvia, S., Development of edible films and coatings with antimicrobial activity (2011) J. Food Bioprocess Technol., 4, pp. 849-875
  • Cao-Hoang, L., Chaine, A., Grégoire, L., Waché, Y., Potential of nisin-incorporated sodium caseinate films to control Listeria in artificially contaminated cheese (2010) Food Microbiol., 27, pp. 940-944
  • Cha, D., Chinnan, M., Biopolymer-based antimicrobial packaging: a review (2004) Crit. Rev. Food Sci. Nutr., 44, pp. 223-237
  • Cutter, C., Microbial control by packaging: a review (2002) Crit. Rev. Food Sci. Nutr., 42, pp. 151-161
  • Delves-Broughton, J., Blackburn, P., Evans, R., Hugenholtz, J., Applications of the bacteriocin, nisin (1996) Antonie Van Leeuwenhoek, 69, pp. 193-202
  • Delville, J., Joly, C., Dole, P., Bliard, C., Influence of photocrosslinking on the retrogradation of wheat starch based films (2003) Carbohydr. Polym., 53, pp. 373-381
  • El-Diasty, E., El-Kaseh, R., Salem, R., The effect of natamycin on keeping quality and organoleptic characters of yoghurt (2008) Arab J. Biotechnol., 12, pp. 41-48
  • Fajardo, P., Martins, J., Fuciños, C., Pastrana, L., Teixeira, J., Vicente, A., Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of saloio cheese (2010) J. Food Eng., 101, pp. 349-356
  • Fernández, M., Jagus, R., Mugliaroli, S., Effect of combined natural antimicrobials on spoilage microorganisms and Listeria innocua in a whey cheese "ricotta" (2014) Food Bioprocess Technol, pp. 1-10
  • Franssen, L., Rumsey, T., Krochta, J., Whey protein film composition effects on potassium sorbate and natamycin diffusion (2004) J. Food Sci., 69, pp. 347-350
  • Gallo, L., Jagus, R., Modelling Saccharomyces cerevisiae inactivation by natamycin in liquid cheese whey (2006) Brazilian J. Food Technol., 9, pp. 311-316
  • Gould, G., Methods of preservation and extension of shelf life (1997) Int. J. Food Microbiol., 33, pp. 51-64
  • Guiga, W., Swesi, Y., Galland, S., Peyrol, E., Degraeve, P., Sebti, I., Innovative multilayer antimicrobial films made with Nisaplin® or nisin and cellulosic ethers: physico-chemical characterization, bioactivity and nisin desorption kinetics (2010) Innov. Food Sci. Emerg. Technol., 11, pp. 352-360
  • Gupta, K., Chatterjee, C., Gupta, B., Isolation and characterization of heavy metal tolerant gram-positive bacteria with bioremedial properties from municipal waste rich soil of kestopur canal (Kolkata), West Bengal, India (2012) Biologia (Bratisl), 67, pp. 827-836
  • Hammond, S., Lambert, P., Membrane-active antimicrobial agents (1978) Antibiotics and Antimicrobial Action, pp. 34-36. , Edward Arnold Publishers Limited, London
  • Han, J., A review of food packaging technologies and innovations (2014) Innovations in Food Packaging, pp. 3-12. , Academic Press, San Diego, CA, J. Han (Ed.)
  • Hanušová, K., Šťastná, M., Votavová, L., Klaudisová, K., Dobiáš, J., Voldřich, M., Marek, M., Polymer films releasing nisin and/or natamycin from polyvinyldichloride lacquer coating: nisin and natamycin migration, efficiency in cheese packaging (2010) J. Food Eng., 99, pp. 491-496
  • Imran, M., El-Fahmy, S., Revol-Junelles, A., Desobry, S., Cellulose derivative based active coatings: effects of nisin and plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films (2010) Carbohydr. Polym., 81, pp. 219-225
  • Kim, K., Ko, C., Park, H., Mechanical properties, water vapor permeabilities and solubilities of highly carboxymethylated starch-based edible films (2002) J. Food Sci., 67, pp. 218-222
  • Koontz, J., Marcy, J., Barbeau, W., Duncan, S., Stability of natamycin and its cyclodextrin inclusion complexes in aqueous solution (2003) J. Agric. Food Chem., 51, pp. 7111-7114
  • La Storia, A., Ercolini, D., Marinello, F., Mauriello, G., Characterization of bacteriocin-coated antimicrobial polyethylene films by atomic force microscopy (2008) J. Food Sci., 73, pp. 48-54
  • Lee, H., Zhou, B., Liang, W., Feng, H., Scott, E., Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: microbial responses and kinetics modeling (2009) J. Food Eng., 93, pp. 354-364
  • Leistner, L., Basic aspects of food preservation by hurdle technology (2000) Int. J. Food Microbiol., 55, pp. 181-186
  • Martins, J., Cerqueira, M., Souza, B., Carmo Avides, M., Vicente, A., Shelf life extension of ricotta cheese using coatings of galactomannans from nonconventional sources incorporating nisin against Listeria monocytogenes (2010) J. Agric. Food Chem., 58, pp. 1884-1891
  • Miltz, J., Passy, N., Mannheim, C., Trends and applications of active packaging systems (1995) Spec. Publ. R. Soc. Chem., 162, pp. 201-210
  • Muscat, D., Adhikari, R., McKnight, S., Guo, Q., Adhikari, B., The physicochemical characteristics and hydrophobicity of high amylose starch-glycerol films in the presence of three natural waxes (2013) J. Food Eng., 119, pp. 205-219
  • Ollé Resa, C., Gerschenson, L., Jagus, R., Effect of natamycin on physical properties of starch edible films and their effect on Saccharomyces cerevisiae activity (2013) Food Bioprocess Technol., 6, pp. 3124-3133
  • Ollé Resa, C., Gerschenson, L., Jagus, R., Natamycin and nisin supported on starch edible films for controlling mixed culture growth on model systems and port salut cheese (2014) Food Control, 44, pp. 146-151
  • Ollé Resa, C., Jagus, R., Gerschenson, L., Effect of natamycin, nisin and glycerol on the physicochemical properties, roughness and hydrophobicity of tapioca starch edible films (2014) Mater. Sci. Eng. C, 40, pp. 281-287
  • Pintado, C., Ferreira, M., Sousa, I., Control of pathogenic and spoilage microorganisms from cheese surface by whey protein films containing malic acid, nisin and natamycin (2010) Food Control, 21, pp. 240-246
  • Pires, A., Soares, N., Andrade, N., Silva, L., Camilloto, G., Bernardes, P., Dos Santos Pires, A., Campos Bernardes, P., Development and evaluation of active packaging for sliced mozzarella preservation (2008) Packag. Technol. Sci., 21, pp. 375-383
  • Quintavalla, S., Vicini, L., Antimicrobial food packaging in meat industry (2002) Meat Sci., 62, pp. 373-380
  • Ramos, O., Silva, S., Soaresa, J., Fernandesa, J., Poçasa, M., Pintadoa, M., Malcata, F., Features and performance of edible films, obtained from whey protein isolate formulated with antimicrobial compounds (2012) Food Res. Int., 45, pp. 351-361
  • Ray, S., Bousmina, M., Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world (2005) Prog. Mater. Sci., 50, pp. 962-1079
  • Realini, C., Marcos, B., Active and intelligent packaging systems for a modern society (2014) Meat Sci., 98, pp. 404-419
  • Reppas, C., Swidan, S., Tobey, S., Turowski, M., Dressman, J., Hydroxypropylmethylcellulose significantly lowers blood cholesterol in mildly hypercholesterolemic human subjects (2009) Eur. J. Clin. Nutr., 63, pp. 71-77
  • Reps, A., Jedrychowski, L., Tomasik, J., Wisniewska, K., Natamycin in ripening cheeses (2002) Pakistan J. Nutr., 1, pp. 243-247
  • Sobrino-Lòpez, A., Martín-Belloso, O., Use of nisin and other bacteriocins for preservation of dairy products (2008) Int. Dairy J., 18, pp. 329-343
  • Sorrentino, A., Gorrasi, G., Vittoria, V., Potential perspectives of bio-nanocomposites for food packaging applications (2007) Trends Food Sci. Technol., 18, pp. 84-95
  • Te Welscher, Y., Ten Napel, H., Balagué, M., Souza, C., Riezman, H., De Kruijff, B., Breukink, E., Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane (2008) J. Biol. Chem., 283, pp. 6393-6401
  • Te Welscher, Y., Jones, L., van Leeuwen, M., Dijksterhuis, J., De Kruijff, B., Eitzen, G., Breukink, E., Natamycin inhibits vacuole fusion at the priming phase via a specific interaction with ergosterol (2010) Antimicrob. Agents Chemother., 54, pp. 2618-2625
  • Tharanathan, R., Biodegradable films and composite coatings: past, present and future (2003) Crit. Rev. Food Sci. Technol., 14, pp. 71-78
  • Thomas, L., Clarkson, M., Delves-Broughton, J., Nisin (2000) Natural Food Antimicrobial Systems, pp. 463-524. , CRC Press, Boca Raton, FL, A.S. Naidu (Ed.)
  • Tiwari, B., Valdramidis, V., O'Donnell, C., Muthukumarappan, K., Bourke, P., Cullen, P., Application of natural antimicrobials for food preservation (2009) J. Agric. Food Chem., 57, pp. 5987-6000
  • Ture, H., Eroglu, E., Ozen, B., Soyer, F., Effect of biopolymers containing natamycin against Aspergillus niger and Penicillium roqueforti on fresh kashar cheese (2011) Int. J. Food Sci. Technol., 46, pp. 154-160
  • Vanderroost, M., Ragaert, P., Devlieghere, F., De Meulenaer, B., Intelligent food packaging: the next generation (2014) Trends Food Sci. Technol., 39, pp. 47-62
  • Yam, K., Takhistov, P., Miltz, J., Intelligent packaging: concepts and applications (2005) J. Food Sci., 70, pp. 1-10

Citas:

---------- APA ----------
Jagus, R.J., Gerschenson, L.N. & Ollé Resa, C.P. (2016) . Combinational Approaches for Antimicrobial Packaging: Natamycin and Nisin. Antimicrobial Food Packaging, 599-608.
http://dx.doi.org/10.1016/B978-0-12-800723-5.00049-8
---------- CHICAGO ----------
Jagus, R.J., Gerschenson, L.N., Ollé Resa, C.P. "Combinational Approaches for Antimicrobial Packaging: Natamycin and Nisin" . Antimicrobial Food Packaging (2016) : 599-608.
http://dx.doi.org/10.1016/B978-0-12-800723-5.00049-8
---------- MLA ----------
Jagus, R.J., Gerschenson, L.N., Ollé Resa, C.P. "Combinational Approaches for Antimicrobial Packaging: Natamycin and Nisin" . Antimicrobial Food Packaging, 2016, pp. 599-608.
http://dx.doi.org/10.1016/B978-0-12-800723-5.00049-8
---------- VANCOUVER ----------
Jagus, R.J., Gerschenson, L.N., Ollé Resa, C.P. Combinational Approaches for Antimicrobial Packaging: Natamycin and Nisin. Antimicrob. Food Packag. 2016:599-608.
http://dx.doi.org/10.1016/B978-0-12-800723-5.00049-8