Parte de libro

Fiszbein, A.; Godoy Herz, M.A.; Gomez Acuña, L.I.; Kornblihtt, A.R. "Interplay Between Chromatin and Splicing" (2016) Chromatin Regulation and Dynamics:191-209
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

Alternative splicing is a fundamental mRNA processing event that explains how a high biologic complexity is achieved from a limited number of genes. By allowing each gene to encode several polypeptide variants, alternative splicing largely expands the coding capacities of the genetic information. Regulation of splicing and alternative splicing is important to determine normal cell functioning, cell differentiation, and responses to external cues. Moreover, misregulation of splicing is frequently associated to hereditary disease and cancer. As most splicing or splicing commitment takes place cotranscriptionally, an additional layer of splicing regulation based on the regulation of transcription is opened. As transcription occurs through chromatin, any particular factor affecting chromatin structure will also alter transcription and therefore may eventually affect splicing decisions. A complex picture emerges in which splicing regulation not only depends on chromatin structure determined by specific histone marks, but also by DNA methylation and nucleosome positioning. Moreover, in actively transcribed genes, transcription and alternative splicing machineries, and dynamics affect chromatin structure. This chapter discusses the multiple layers of cotranscriptional regulation of splicing and alternative splicing in which chromatin structure plays a fundamental role by providing a dynamic scaffold for interactions between the splicing and transcription machineries. We focus on evidence that explains how chromatin organization can impact on the regulation of splicing and alternative splicing acting in coordination with recruitment of splicing factors, adaptor proteins, and cotranscriptional features. © 2017 Elsevier Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:Interplay Between Chromatin and Splicing
Autor:Fiszbein, A.; Godoy Herz, M.A.; Gomez Acuña, L.I.; Kornblihtt, A.R.
Filiación:Institute of Physiology, Molecular Biology and Neurosciences (IFIBYNE-CONICET), Department of Physiology, Molecular and Cell, Faculty of Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
Palabras clave:Alternative splicing; Chromatin structure; RNAPII elongation rate; Transcription
Año:2016
Página de inicio:191
Página de fin:209
DOI: http://dx.doi.org/10.1016/B978-0-12-803395-1.00008-3
Título revista:Chromatin Regulation and Dynamics
Título revista abreviado:Chromatin Regul. and Dyn.
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97801280_v_n_p191_Fiszbein

Referencias:

  • Kornblihtt, A.R., Schor, I.E., Alló, M., Dujardin, G., Petrillo, E., Muñoz, M.J., Alternative splicing: a pivotal step between eukaryotic transcription and translation (2013) Nat Rev Mol Cell Biol, 14, pp. 153-165
  • Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S.F., Burge, C.B., Alternative isoform regulation in human tissue transcriptomes (2008) Nature, 456, pp. 470-476
  • Srebrow, A., Kornblihtt, A.R., The connection between splicing and cancer (2006) J Cell Sci, 119, pp. 2635-2641
  • Novoyatleva, T., Tang, Y., Rafalska, I., Stamm, S., Pre-mRNA missplicing as a cause of human disease (2006) Prog Mol Subcell Biol, 44, pp. 27-46
  • Ward, A.J., Cooper, T.A., The pathobiology of splicing (2010) J Pathol, 220, pp. 152-163
  • Will, C.L., Lührmann, R., Spliceosome structure and function (2011) Cold Spring Harb Perspect Biol, 3, pp. 1-2
  • Naftelberg, S., Schor, I.E., Ast, G., Kornblihtt, A.R., Regulation of alternative splicing through coupling with transcription and chromatin structure (2015) Annu Rev Biochem, 84, pp. 165-198
  • Gómez Acuña, L.I., Fiszbein, A., Alló, M., Schor, I.E., Kornblihtt, A.R., Connections between chromatin signatures and splicing (2013) Wiley Interdiscip Rev RNA, 4, pp. 77-91
  • Yan, C., Hang, J., Wan, R., Huang, M., Wong, C.C.S.Y., Structure of a yeast spliceosome at 3.6-angstrom resolution (2015) Science, pp. 1-16
  • Hang, J., Wan, R., Yan, C., Structural basis of pre-mRNA splicing (2015) Science, 349, pp. 1191-1198
  • Cramer, P., Pesce, C.G., Baralle, F.E., Kornblihtt, A.R., Functional association between promoter structure and transcript alternative splicing (1997) Proc Natl Acad Sci USA, 94, pp. 11456-11460
  • Cramer, P., Cáceres, J.F., Cazalla, D., Kadener, S., Muro, A.F., Baralle, F.E., Kornblihtt, A.R., Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer (1999) Mol Cell, 4, pp. 251-258
  • Beyer, A.L., Osheim, Y.N., Splice site selection, rate of splicing, and alternative splicing on nascent transcripts (1988) Genes Dev, 2, pp. 754-765
  • Ameur, A., Zaghlool, A., Halvardson, J., Wetterbom, A., Gyllensten, U., Cavelier, L., Feuk, L., Total RNA sequencing reveals nascent transcription and widespread co-transcriptional splicing in the human brain (2011) Nat Struct Mol Biol, 18, pp. 1435-1440
  • Brugiolo, M., Herzel, L., Neugebauer, K.M., Counting on co-transcriptional splicing (2013) F1000Prime Rep, 5, p. 9
  • Carrillo Oesterreich, F., Preibisch, S., Neugebauer, K.M., Global analysis of nascent RNA reveals transcriptional pausing in terminal exons (2010) Mol Cell, 40, pp. 571-581
  • Tardiff, D.F., Lacadie, S.A., Rosbash, M., A genome-wide analysis indicates that yeast pre-mRNA splicing is predominantly posttranscriptional (2006) Mol Cell, 24, pp. 917-929
  • Baurén, G., Wieslander, L., Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription (1994) Cell, 76, pp. 183-192
  • Pandya-Jones, A., Black, D.L., Co-transcriptional splicing of constitutive and alternative exons (2009) RNA, 15, pp. 1896-1908
  • De la Mata, M., Lafaille, C., Kornblihtt, A.R., First come, first served revisited: factors affecting the same alternative splicing event have different effects on the relative rates of intron removal (2010) RNA, 16, pp. 904-912
  • Gerber, H.P., Hagmann, M., Seipel, K., Georgiev, O., West, M.A., Litingtung, Y., Schaffner, W., Corden, J.L., RNA polymerase II C-terminal domain required for enhancer-driven transcription (1995) Nature, 374, pp. 660-662
  • McCracken, S., Fong, N., Rosonina, E., Yankulov, K., Brothers, G., Siderovski, D., Hessel, A., Bentley, D.L., 5'-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II (1997) Genes Dev, 11, pp. 3306-3318
  • McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G., Greenblatt, J., Patterson, S.D., Bentley, D.L., The C-terminal domain of RNA polymerase II couples mRNA processing to transcription (1997) Nature, 385, pp. 357-361
  • Muñoz, M.J., de la Mata, M., Kornblihtt, A.R., The carboxy terminal domain of RNA polymerase II and alternative splicing (2010) Trends Biochem Sci, 35, pp. 497-504
  • Buratowski, S., Progression through the RNA polymerase II CTD cycle (2009) Mol Cell, 36, pp. 541-546
  • Egloff, S., Dienstbier, M., Murphy, S., Updating the RNA polymerase CTD code: adding gene-specific layers (2012) Trends Genet, 28, pp. 333-341
  • Heidemann, M., Hintermair, C., Voß, K., Eick, D., Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription (2013) Biochim Biophys Acta, 1829, pp. 55-62
  • Hsin, J.-P., Manley, J.L., The RNA polymerase II CTD coordinates transcription and RNA processing (2012) Genes Dev, 26, pp. 2119-2137
  • Kim, M., Krogan, N.J., Vasiljeva, L., Rando, O.J., Nedea, E., Greenblatt, J.F., Buratowski, S., The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II (2004) Nature, 432, pp. 517-522
  • Egloff, S., O'Reilly, D., Chapman, R.D., Taylor, A., Tanzhaus, K., Pitts, L., Eick, D., Murphy, S., Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression (2007) Science, 318, pp. 1777-1779
  • Hsin, J.-P., Sheth, A., Manley, J.L., RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3' end processing (2011) Science, 334, pp. 683-686
  • Moore, M.J., Proudfoot, N.J., Pre-mRNA processing reaches back to transcription and ahead to translation (2009) Cell, 136, pp. 688-700
  • Perales, R., Bentley, D., Cotranscriptionality: the transcription elongation complex as a nexus for nuclear transactions (2009) Mol Cell, 36, pp. 178-191
  • Das, R., Yu, J., Zhang, Z., Gygi, M.P., Krainer, A.R., Gygi, S.P., Reed, R., SR proteins function in coupling RNAP II transcription to pre-mRNA splicing (2007) Mol Cell, 26, pp. 867-881
  • De la Mata, M., Kornblihtt, A.R., RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20 (2006) Nat Struct Mol Biol, 13, pp. 973-980
  • Monsalve, M., Wu, Z., Adelmant, G., Puigserver, P., Fan, M., Spiegelman, B.M., Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1 (2000) Mol Cell, 6, pp. 307-316
  • Huang, Y., Li, W., Yao, X., Lin, Q.J., Yin, J.W., Liang, Y., Heiner, M., Wang, G., Mediator complex regulates alternative mRNA processing via the MED23 subunit (2012) Mol Cell, 45, pp. 459-469
  • De La Mata, M., Alonso, C.R., Kadener, S., Fededa, J.P., Blaustein, M., Pelisch, F., Cramer, P., Kornblihtt, A.R., A slow RNA polymerase II affects alternative splicing in vivo (2003) Mol Cell, 12, pp. 525-532
  • Shukla, S., Kavak, E., Gregory, M., Imashimizu, M., Shutinoski, B., Kashlev, M., Oberdoerffer, P., Oberdoerffer, S., CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing (2011) Nature, 479, pp. 74-79
  • Amit, M., Donyo, M., Hollander, D., Goren, A., Kim, E., Gelfman, S., Lev-Maor, G., Postolsky, B., Differential GC content between exons and introns establishes distinct strategies of splice-site recognition (2012) Cell Rep, 1, pp. 543-556
  • Tilgner, H., Knowles, D.G., Johnson, R., Davis, C.A., Chakrabortty, S., Djebali, S., Curado, J., Guigó, R., Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs (2012) Genome Res, 22, pp. 1616-1625
  • Spies, N., Nielsen, C.B., Padgett, R.A., Burge, C.B., Biased chromatin signatures around polyadenylation sites and exons (2009) Mol Cell, 36, pp. 245-254
  • Keren-Shaul, H., Lev-Maor, G., Ast, G., Pre-mRNA splicing is a determinant of nucleosome organization (2013) PLoS One, p. 8
  • Schwartz, S., Meshorer, E., Ast, G., Chromatin organization marks exon-intron structure (2009) Nat Struct Mol Biol, 16, pp. 990-995
  • Huang, H., Yu, S., Liu, H., Sun, X., Nucleosome organization in sequences of alternative events in human genome (2012) BioSystems, 109, pp. 214-219
  • Dujardin, G., Lafaille, C., de la Mata, M., Marasco, L.E., Muñoz, M.J., Le Jossic-Corcos, C., Corcos, L., Kornblihtt, A.R., How slow RNA polymerase II elongation favors alternative exon skipping (2014) Mol Cell, 54, pp. 683-690
  • Coulter, D.E., Greenleaf, A.L., A mutation in the largest subunit of RNA polymerase II alters RNA chain elongation in vitro (1985) J Biol Chem, 260, pp. 13190-13198
  • Chen, Y., Chafin, D., Price, D.H., Greenleaf, A.L., Drosophila RNA polymerase II mutants that affect transcription elongation (1996) J Biol Chem, 271, pp. 5993-5999
  • Alló, M., Buggiano, V., Fededa, J.P., Petrillo, E., Schor, I., de la Mata, M., Agirre, E., Elela, S.A., Control of alternative splicing through siRNA-mediated transcriptional gene silencing (2009) Nat Struct Mol Biol, 16, pp. 717-724
  • Ameyar-Zazoua, M., Rachez, C., Souidi, M., Robin, P., Fritsch, L., Young, R., Morozova, N., Andrau, J.-C., Argonaute proteins couple chromatin silencing to alternative splicing (2012) Nat Struct Mol Biol, 19, pp. 998-1004
  • Schor, I.E., Rascovan, N., Pelisch, F., Alló, M., Kornblihtt, A.R., Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing (2009) Proc Natl Acad Sci USA, 106, pp. 4325-4330
  • Schor, I.E., Fiszbein, A., Petrillo, E., Kornblihtt, A.R., Intragenic epigenetic changes modulate NCAM alternative splicing in neuronal differentiation (2013) EMBO J, 32, pp. 2264-2274
  • Luco, R.F., Pan, Q., Tominaga, K., Blencowe, B.J., Pereira-Smith, O.M., Misteli, T., Regulation of alternative splicing by histone modifications (2010) Science, 327, pp. 996-1000
  • Luco, R.F., Allo, M., Schor, I.E., Kornblihtt, A.R., Misteli, T., Epigenetics in alternative pre-mRNA splicing (2011) Cell, 144, pp. 16-26
  • Gonzalez, I., Munita, R., Agirre, E., Dittmer, T., Gysling, K., Misteli, T., Luco, R.F., A lncRNA regulates alternative splicing via establishment of a splicing-specific chromatin signature (2015) Nat Struct Mol Biol, 5, pp. 370-376
  • Zhou, H.-L., Hinman, M.N., Barron, V.A., Geng, C., Zhou, G., Luo, G., Siegel, R.E., Lou, H., Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner (2011) Proc Natl Acad Sci USA, 108, pp. E627-E635
  • De Almeida, S.F., Grosso, A.R., Koch, F., Fenouil, R., Carvalho, S., Andrade, J., Levezinho, H., Gut, I., Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36 (2011) Nat Struct Mol Biol, 18, pp. 977-983
  • Mathieu, O., Bouché, N., Interplay between chromatin and RNA processing (2014) Curr Opin Plant Biol, 18, pp. 60-65
  • Bond, D.M., Baulcombe, D.C., Epigenetic transitions leading to heritable, RNA-mediated de novo silencing in Arabidopsis thaliana (2015) Proc Natl Acad Sci USA, 112, pp. 917-922
  • Ausin, I., Greenberg, M.V.C., Li, C.F., Jacobsen, S.E., The splicing factor SR45 affects the RNA-directed DNA methylation pathway in Arabidopsis (2012) Epigenetics, 7, pp. 29-33
  • Zhang, C.-J., Zhou, J.-X., Liu, J., Ma, Z.-Y., Zhang, S.-W., Dou, K., Huang, H.-W., Zhu, J.-K., The splicing machinery promotes RNA-directed DNA methylation and transcriptional silencing in Arabidopsis (2013) EMBO J, 32, pp. 1128-1140
  • Henriques, R., Mas, P., Chromatin remodeling and alternative splicing: pre- and post-transcriptional regulation of the Arabidopsis circadian clock (2013) Semin Cell Dev Biol, 24, pp. 399-406
  • Sanchez, S.E., Petrillo, E., Beckwith, E.J., Zhang, X., Rugnone, M.L., Hernando, C.E., Cuevas, J.C., Simpson, C.G., A methyl transferase links the circadian clock to the regulation of alternative splicing (2010) Nature, 468, pp. 112-116
  • Cocquerelle, C., Mascrez, B., Hétuin, D., Bailleul, B., Mis-splicing yields circular RNA molecules (1993) FASEB J, 7, pp. 155-160
  • Wilusz, J., Circular RNA and splicing: skip happens (2015) J Mol Biol, 427, pp. 2411-2413
  • Mongelard, F., Labrador, M., Baxter, E.M., Gerasimova, T.I., Corces, V.G., Trans-splicing as a novel mechanism to explain interallelic complementation in Drosophila (2002) Genetics, 160, pp. 1481-1487
  • Ullu, E., Matthews, K.R., Tschudi, C., Temporal order of RNA-processing reactions in trypanosomes: rapid trans splicing precedes polyadenylation of newly synthesized tubulin transcripts (1993) Mol Cell Biol, 13 (1), pp. 720-725
  • Casado-Vela, J., Lacal, J.C., Elortza, F., Protein chimerism: novel source of protein diversity in humans adds complexity to bottom-up proteomics (2013) Proteomics, 13, pp. 5-11
  • Berget, S.M., Sharp, P., A spliced sequence at the 5'-terminus of adenovirus late mRNA (1977) Brookhaven Symp Biol, 74, pp. 332-344
  • Chow, L.T., Gelinas, R.E., Broker, T.R., Roberts, R.J., An amazing sequence arrangement at the 5' ends of adenovirus 2 messenger RNA (1977) Cell, 2, pp. 1-8

Citas:

---------- APA ----------
Fiszbein, A., Godoy Herz, M.A., Gomez Acuña, L.I. & Kornblihtt, A.R. (2016) . Interplay Between Chromatin and Splicing. Chromatin Regulation and Dynamics, 191-209.
http://dx.doi.org/10.1016/B978-0-12-803395-1.00008-3
---------- CHICAGO ----------
Fiszbein, A., Godoy Herz, M.A., Gomez Acuña, L.I., Kornblihtt, A.R. "Interplay Between Chromatin and Splicing" . Chromatin Regulation and Dynamics (2016) : 191-209.
http://dx.doi.org/10.1016/B978-0-12-803395-1.00008-3
---------- MLA ----------
Fiszbein, A., Godoy Herz, M.A., Gomez Acuña, L.I., Kornblihtt, A.R. "Interplay Between Chromatin and Splicing" . Chromatin Regulation and Dynamics, 2016, pp. 191-209.
http://dx.doi.org/10.1016/B978-0-12-803395-1.00008-3
---------- VANCOUVER ----------
Fiszbein, A., Godoy Herz, M.A., Gomez Acuña, L.I., Kornblihtt, A.R. Interplay Between Chromatin and Splicing. Chromatin Regul. and Dyn. 2016:191-209.
http://dx.doi.org/10.1016/B978-0-12-803395-1.00008-3