Parte de libro

Prado, J.M.; Vardanega, R.; Debien, I.C.N.; Meireles, M.A.D.A.; Gerschenson, L.N.; Sowbhagya, H.B.; Chemat, S. "Conventional extraction" (2015) Food Waste Recovery: Processing Technologies and Industrial Techniques:127-148
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor

Abstract:

Traditional extraction technologies, such as solvent extraction and steam distillation, have been used for the recovery of natural extracts from plant and animal sources for a long time. These extracts have mainly been used as food additives and medicines. Later, other more efficient and environmentally friendly methods like enzyme-, ultrasound-, and microwave-assisted extraction, and supercritical fluid extraction were developed. Following the tendency of modern society to decrease pollution, recovery of bioactive compounds from food wastes is an alternative option that adds value to such residues and at the same time decreases their environmental footprint. In this chapter, the use of well-established extraction technologies to recover bioactive compounds from food industry wastes is presented. © 2015 Elsevier Inc. All rights reserved.

Registro:

Documento: Parte de libro
Título:Conventional extraction
Autor:Prado, J.M.; Vardanega, R.; Debien, I.C.N.; Meireles, M.A.D.A.; Gerschenson, L.N.; Sowbhagya, H.B.; Chemat, S.
Filiación:Centro de Ciências da Natureza (CCN), UFSCar (Federal University of São Carlos), Buri, Brazil
LASEFI/DEA (Dept. of Food Engineering), FEA (School of Food Engineering)/UNICAMP (Univ. of Campinas), Campinas, São Paulo, Brazil
Industry Department, Natural and Exact Sciences School (FCEN), Buenos Aires University (UBA), Buenos Aires, Argentina
Department of Plantation Products, Spices and Flavour Technology, CSIR - Central Food Technological Research Institute, Mysore, Karnataka, India
Division Sante Centre de Recherches Scientifique et Technique en Analyses Physico-Chimiques (C.R.A.P.C), Bon-Ismail, Algeria
National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina
Palabras clave:Enzyme-assisted extraction; Food wastes; Microwave-assisted extraction; Solvent extraction; Steam distillation; Supercritical fluid extraction; Distillation; Effluent treatment; Enzymes; Solvent extraction; Supercritical fluid extraction; Supercritical fluids; Conventional extraction; Environmental footprints; Enzyme-assisted extractions; Extraction technology; Food industry wastes; Food waste; Microwave-assisted extraction; Steam distillation; Recovery
Año:2015
Página de inicio:127
Página de fin:148
DOI: http://dx.doi.org/10.1016/B978-0-12-800351-0.00006-7
Título revista:Food Waste Recovery: Processing Technologies and Industrial Techniques
Título revista abreviado:Food Waste Recovery: Process. Technol. and Ind. Techniques
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97801280_v_n_p127_Prado

Referencias:

  • Aguiar, A.C., Visentainer, J.V., Martínez, J., Extraction from striped weakfish (Cynoscion striatus) wastes with pressurized CO2: global yield, composition, kinetics and cost estimation (2012) J. Supercrit. Fluid., 71, pp. 1-10
  • Alessandro, A., Casazza, B.A., Mantegna, S., Cravotto, G., Perego, P., Extraction of phenolics from Vitis vinifera wastes using non-conventional technique (2010) J. Food Eng., 100, pp. 50-55
  • Amiguet, V.T., Kramp, K.L., Mao, J.Q., McRae, C., Goulah, A., Supercritical carbon dioxide extraction of polyunsaturated fatty acids from Northern shrimp (Pandalus borealis Kreyer) processing by-products (2012) Food Chem., 130, pp. 853-858
  • Andrade, K.S., Gonçalvez, R.T., Maraschin, M., Ribeiro-do-Valle, R.M., Martínez, J., Ferreira, S.R.S., Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition (2012) Talanta, 88, pp. 544-552
  • Arnáiz, E., Bernal, J., Martín, M.T., Nozal, M.J., Bernal, J.L., Toribio, L., Supercritical fluid extraction of free amino acids from broccoli leaves (2012) J. Chromatog. A, 1250, pp. 49-53
  • Asp, N., Johansson, C.G., Hallmer, H., Siljestrom, M., Rapid enzymatic assay of insoluble and soluble dietary fiber (1983) J. Agr. Food Chem., 31, pp. 346-482
  • Baiano, A., Bevilacqua, L., Terracone, C., Contò, F., Del Nobil, M.A., Single and interactive effects of process variables on microwave-assisted and conventional extractions of antioxidants from vegetable solid wastes (2014) J. Food Eng., 120, pp. 135-145
  • Batista, I., Recovery of proteins from fish waste products by alkaline extraction (1999) European Food Res. Technol., 210, pp. 84-89
  • Benelli, P., Riehl, C.A.S., Smania, A., Smania, E.F.A., Ferreira, S.R.S., Bioactive extracts of orange (Citrus sinensis L. Osbeck) pomace obtained by SFE and low pressure techniques: mathematical modeling and extract composition (2010) J. Supercrit. Fluid., 55, pp. 132-141
  • Bernardo-Gil, M.G., Roque, R., Roseiro, L.B., Duarte, L.C., Gírio, F., Supercritical extraction of carob kibbles (Ceratonia siliqua L.) (2011) J. Supercrit. Fluid., 59, pp. 36-42
  • Bittar, S.A., Périno-Issartier, S., Dangles, O., Chemat, F., An innovative grape juice enriched in polyphenols by microwave-assisted extraction (2013) Food Chem., 141, pp. 3268-3272
  • Brunner, G., (1994) Gas Extraction: An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes Darmstadt, , Steinkopff
  • Canovas, G.V.B., Ibarz, A., Solid-liquid extraction (2002) Unit Operations in Food Engineering, pp. 773-821. , CRC Press (Taylor and Francis Group), Boca Raton, Chapter 21
  • Cavalcanti, R.N., Veggi, P.C., Meireles, M.A.A., Supercritical fluid extraction with modifier of antioxidant compounds from jabuticaba (Myrciaria cauliflora) by-products: economic viability (2011) Procedia Food Sci., 1, pp. 1672-1678
  • Cerpa, M.G., Rafael, B., Mato, M., Cocero, J., Ceriani, R., Meirelles, A.J.A., Prado, J.M., Meireles, M.A.A., Steam distillation applied to the food industry (2008) Extracting Bioactive Compounds for Food Products: Theory and Applications, , CRC Press, Boca Raton, M.A.A. Meireles (Ed.)
  • Chemat, S., Esveld, E.D.C., Contribution of microwaves or ultrasonics on carvone and limonene recovery from dill fruits (Anethum graveolens L.) (2013) Innov. Food Sci. Emerg. Technol., 17, pp. 114-119
  • Chemat, F., Lucchesi, M.E., Smadja, J., (2004) Solvent-free microwave extraction of volatile natural substances., , Vol. US 04/0187340 A1
  • Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M., Cintas, P., Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves (2008) Ultrason. Sonochem., 15, pp. 898-902
  • Dang, Y.Y., Zhang, H., Xiu, Z.K., Microwave-assisted aqueous two-phase extraction of phenolics from grape (Vitis vinifera) seed (2013) J. Chem. Technol. Biotechnol., 89 (10), pp. 1576-1581
  • Deng, Q., Zinoviadou, K.G., Galanakis, C.M., Orlien, V., Grimi, N., Vorobiev, E., Lebovka, N., Barba, F.J., The effects of conventional and non-conventional processing on glucosinolates and its derived forms, isothiocyanates: extraction, degradation and applications. (2015) Food Eng. Rev., , in press
  • Diankov, S., Karsheva, M., Hinkov, I., Extraction of natural antioxidants from lemon peels. Kinetics and antioxidant capacity (2011) J. Univ. Chem. Technol. Metal., 46, pp. 315-319
  • Directive 2009/32/EC of the European Parliament and of the Council on the approximation of the laws of the Member States on extraction solvents used in the production of foodstuffs and food ingredients. EU Publication Office, Brussels; Farhat, A., Fabiano-Tixier, A.-S., Maataoui, M.E., Maingonnat, J.-F., Romdhane, M., Chemat, F., Microwave steam diffusion for extraction of essential oil from orange peel: kinetic data, extract's global yield and mechanism (2011) Food Chem., 125, pp. 255-261
  • Farías-Campomanes, A.M., Rostagno, M.A., Meireles, M.A.A., Production of polyphenol extracts from grape bagasse using supercritical fluids: yield, extract composition and economic evaluation (2013) J. Supercrit. Fluid., 77, pp. 70-78
  • (2014), Listing of Additive Status; Ferhat, M.A., Meklati, B.Y., Smadja, J., Chemat, F., An improved microwave Clevenger apparatus for distillation of essential oils from orange peel (2006) J. Chromatog. A, 1112, pp. 121-126
  • Galanakis, C.M., Olive fruit and dietary fibers: components, recovery and applications (2011) Trends Food Sci. Technol., 22, pp. 175-184
  • Galanakis, C.M., Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications (2012) Trends Food Sci. Technol., 26, pp. 68-87
  • Galanakis, C.M., Emerging technologies for the production of nutraceuticals from agricultural by-products: a viewpoint of opportunities and challenges (2013) Food Bioprod. Process., 91, pp. 575-579
  • Galanakis, C.M., Separation of functional macromolecules and micromolecules: from ultrafiltration to the border of nanofiltration. (2015) Trends Food Sci. Technol., 42 (1), pp. 44-63
  • Galanakis, C.M., Schieber, A., Editorial. Special Issue on Recovery and utilization of valuable compounds from food processing by-products (2014) Food Res. Int., 65, pp. 230-299
  • Galanakis, C.M., Goulas, V., Tsakona, S., Manganaris, G.A., Gekas, V., A knowledge base for the recovery of natural phenols with different solvents (2013) Int. J. Food Prop., 16, pp. 382-396
  • Galanakis, C.M., Markouli, E., Gekas, V., Fractionation and recovery of different phenolic classes from winery sludge via membrane filtration (2013) Separ. Purif. Technol., 107, pp. 245-251
  • Galanakis, C.M., Chasiotis, S., Botsaris, G., Gekas, V., Separation and recovery of proteins and sugars from Halloumi cheese whey (2014) Food Res. Int., 65, pp. 477-483
  • Galanakis, C.M., Patsioura, A., Gekas, V., Enzyme kinetics modeling as a tool to optimize food biotechnology applications: a pragmatic approach based on amylolytic enzymes. (2015) Crit. Rev. Food Sci. Technol., 55, pp. 1758-1770
  • Ganzler, K., Salgo, A., Valko, K.J., Microwave extraction: a novel sample preparation method for chromatography (1986) J. Chromatog., 371, pp. 229-306
  • Gracia, I., Rodríguez, J.F., Lucas, A., Fernandez-Ronco, M.P., Optimization of supercritical CO2 process for the concentration of tocopherol, carotenoids and chlorophylls from residual olive husk (2011) J. Supercrit. Fluid., 59, pp. 72-77
  • Heng, W.W., Xiong, L.W., Ramanan, R.N., Hong, T.L., Kong, K.W., Galanakis, C.M., Prasad, K.N., Two level factorial design for the optimization of phenolics and flavonoids recovery from palm kernel by-product (2015) Ind. Crop. Prod., 63, pp. 238-248
  • Huma, Z., Abert-Vian, M., Elmaataoui, M., Chemat, F., A novel idea in food extraction field: study of vacuum microwave hydrodiffusion technique for by-products extraction (2011) J. Food Eng., 105, pp. 351-360
  • Imelouane, B., Elbachiri, A., Ankit, M., Benzeid, H., Khedid, K., Physico-chemical compositions and antimicrobial activity of essential oil of Eastern Moroccan Lavandula dentata (2009) Int. J. Agric. Biol., 11, pp. 113-118
  • Kim, J.-Y., Oh, T.-H., Kim, B.J., Kim, S.-S., Lee, N.H., Hyun, C.-G., Chemical composition and anti-inflammatory effects of essential oil from Farfugium japonicum flower (2008) J. Oleo Sci., 57, pp. 623-628
  • Li, J., Zu, Y.G., Fu, Y.J., Yang, Y.C., Li, S.M., Li, Z.N., Wink, M., Optimization of microwave-assisted extraction of triterpene saponins from defatted residue of yellow horn (Xanthoceras sorbifolia Bunge.) kernel and evaluation of its antioxidant activity (2010) Innov. Food Sci. Technol., 11, pp. 637-643
  • Luque de Castro, M.D., Fernández-Peralbo, M.A., Linares-Zea, B., Linares, J., The role of microwaves in the extraction of fats and oils (2013) Microwave-Assisted Extraction of Bioactive Compounds, , Springer, New York, F. Chemat, G. Cravotto (Eds.)
  • Meireles, M.A.A., (2009) Extracting Bioactive Compounds for Food Products: Theory and Applications., p. 464. , CRC Press/Taylor & Francis Group, Boca Raton
  • Mengal, P., Behn, D., Bellido, G.M., Monpon, B., VMHD (vacuum microwave hydrodistillation) (1993) Parfums Cosmétiques Aromes, 114, pp. 66-67
  • Mezzomo, N., Martínez, J., Maraschin, M., Ferreira, S.R.S., Pink shrimp (P. brasiliensis and P. paulensis) residue: supercritical fluid extraction of carotenoid fraction (2013) J. Supercrit. Fluid., 74, pp. 22-33
  • Mokhtarpour, A., Naserian, A., Valizadeh, R., Danesh Mesgaran, M., Pourmollae, F., Extraction of phenolic compounds and tannins from pistachio by-products (2014) Annu. Res. Rev. Biol., 4, pp. 1330-1338
  • Munoz, O., Sepulveda, M., Schwartz, M., Effects of enzymatic treatment on anthocyanic pigments from grape skin from Chilean wine (2004) Food Chem., 87, pp. 487-490
  • Nobre, B.P., Palavra, A.F., Pessoa, F.L.P., Mendes, R.L., Supercritical CO2 extraction of trans-lycopene from Portuguese tomato industrial waste (2009) Food Chem., 116, pp. 680-685
  • Palma, M., Barbero, G.F., Pinheiro, Z., Liazid, A., Barroso, C.G., Rostagno, M.A., Prado, J.M., Meireles, M.A.A., Extraction of natural products: principles and fundamental aspects (2013) Natural Product Extraction: Principles and Applications, pp. 58-88. , Royal Society of Chemistry, Cambridge, M.A. Rostagno, J.M. Prado (Eds.)
  • Paré, J.R.J., Sigouin, M., Lapointe, J., (1990) Microwave-assisted natural products extraction, , CA 1336968 C
  • Patsioura, A., Galanakis, C.M., Gekas, V., Ultrafiltration optimization for the recovery of β-glucan from oat mill waste (2011) J. Membr. Sci., 373, pp. 53-63
  • Pavlović, M.D., Buntić, A.V., Šiler-Marinković, S.S., Dimitrijević-Branković, S.I., Ethanol influenced fast microwave-assisted extraction for natural antioxidants obtaining from spent filter coffee (2013) Separ. Purif. Technolo., 118, pp. 503-510
  • Pereira, C.G., Prado, J.M., Meireles, M.A.A., Economic evaluation of natural product extraction processes (2013) Natural Product Extraction: Principles and Applications, pp. 442-471. , Royal Society of Chemistry, Cambridge, M.A. Rostagno, J.M. Prado (Eds.)
  • Perretti, G., Miniati, E., Montanari, L., Fantozzi, P., Improving the value of rice by-products by SFE (2003) J. Supercrit. Fluid., 26, pp. 63-71
  • Perrut, M., Supercritical fluid applications: industrial developments and economic issues (2000) Ind. Eng. Chem. Res., 39, pp. 4531-4535
  • Prado, J.M., Meireles, M.A.A., Production of valuable compounds by supercritical technology using residues from sugarcane processing (2012) Biorefinery Co-Products: Phytochemicals, Primary Metabolites and Value-Added Biomass Processing, pp. 133-151. , Wiley, West Sussex, C. Bergeron, D.J. Carrier, S. Ramaswamy (Eds.)
  • Prado, J.M., Prado, G.H.C., Meireles, M.A.A., Scale-up study of supercritical fluid extraction process for clove and sugarcane residue (2011) J. Supercrit. Fluid., 56, pp. 231-237
  • Prakash, M.J., Sivakumar, V., Thirugnanasambandham, K., Sridhar, R., Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds (2014) Carbohyd. Polym., 101, pp. 786-791
  • (2014), http://www.radientinc.com, [Online]. Available from: ; Rahmanian, N., Jafari, S.M., Galanakis, C.M., Recovery and removal of phenolic compounds from olive mill wastewater (2014) J. Am. Oil Chem. Soc., 91, pp. 1-18
  • Rajha, H., El Darra, N., Hobaika, H., Boussetta, N., Vorobiev, E., Maroun, R., Louka, N., Extraction of total phenolic compounds, flavonoids, anthocyanins and tannins from grape byproducts by response surface methodology. Influence of solid-liquid ratio, particle size, time, temperature and solvent mixtures on the optimization process (2014) Food Nutr. Sci., 5, pp. 397-409
  • Richardson, J., Harker, J., Backhurst, J., Particle technology and separation processes (2002) Chemical Engineering Design, 2. , Elsevier, Oxford
  • Rosa, P.T.V., Meireles, M.A.A., Fundamentals of supercritical extraction from solid matrices (2009) Extracting Bioactive Compounds for Food Products: Theory and Application, pp. 272-288. , CRC Press/Taylor & Francis Group, Boca Raton, M.A.A. Meireles (Ed.)
  • Roselló-Soto, E., Barba, F.J., Parniakov, O., Galanakis, C.M., Grimi, N., Lebovka, N., Vorobiev, E., High voltage electrical discharges, pulsed electric field and ultrasounds assisted extraction of protein and phenolic compounds from olive kernel. (2015) Food Bioprocess. Technol., 8, pp. 885-894
  • Rostagno, M.A., Prado, J.M., (2013) Natural Product Extraction: Principles and Applications., p. 500. , Royal Society of Chemistry, Cambridge
  • Sachindra, N.M., Bhaskar, N., Mahendrakar, N., Recovery of carotenoids from shrimp waste in organic solvents (2006) Waste Manage., 26, pp. 1092-1098
  • Sahena, F., Zaidul, I.S.M., Jinap, S., Jahurul, M.H.A., Khatib, A., Norulaini, N.A.N., Extraction of fish oil from the skin of Indian mackerel using supercritical fluids (2010) J. Food Eng., 99, pp. 63-69
  • Sánchez-Camargo, A., Meireles, M.A.A., Lopes, B.F., Cabral, F.A., Proximate composition and extraction of carotenoids and lipids from Brazilian redspotted shrimp waste (Farfantepenaeus paulensis) (2011) J. Food Eng., 102, pp. 87-93
  • SAS, S., (2014), http://www.sairem.com, [Online]. Available from: ; Seabra, I.J., Braga, M.E.M., Batista, M.T., Sousa, H.C., Effect of solvent (CO2/ethanol/H2O) on the fractionated enhanced solvent extraction of anthocyanins from elder berry pomace (2010) J. Supercrit. Fluid., 54, pp. 145-152
  • Seixas, F.L., Fukud, D.L., Turbiani, F.R.B., Garcia, P.S., Petkowiczb, C.L.O., Jagadevan, S., Gimenes, M.L., Extraction of pectin from passion fruit peel (Passiflora edulis f. flavicarpa) by microwave-induced heating (2014) Food Hydrocolloid., 38, pp. 186-192
  • Stamatopoulos, K., Chatzilazarou, A., Katsoyannos, E., Optimization of multistage extraction of olive leaves for recovery of phenolic compounds at moderated temperatures and short extraction times (2014) Foods, 3, pp. 66-81
  • Strati, I.F., Oreopoulou, I.F., Process optimisation for recovery of carotenoids from tomato waste (2011) Food Chem., 129, pp. 747-752
  • Tsakona, S., Galanakis, C.M., Gekas, V., Hydro-ethanolic mixtures for the recovery of phenols from Mediterranean plant materials (2012) Food Bioprocess. Technol., 5, pp. 1384-1393
  • Uddin, M.S., Kishimura, H., Isolation and characterization of lecithin from squid (Todarodes pacificus) viscera deoiled by supercritical carbon dioxide extraction (2011) J. Food Sci., 76, pp. C350-C354
  • Virot, M., Tomao, V., Colnagui, G., Visinoni, F., Chemat, F., New microwave-integrated Soxhlet extraction. An advantageous tool for the extraction of lipids from food products (2007) J. Chromatog. A, 1174, pp. 138-144
  • Yang, E.-J., Kim, S.-S., Oh, T.-H., Baik, J.S., Lee, N.H., Hyun, C.-G., Essential oil of citrus fruit waste attenuates LPS-induced nitric oxide production and inhibits the growth of skin pathogens (2009) Int. J. Agric. Biol., 11, pp. 791-794

Citas:

---------- APA ----------
Prado, J.M., Vardanega, R., Debien, I.C.N., Meireles, M.A.D.A., Gerschenson, L.N., Sowbhagya, H.B. & Chemat, S. (2015) . Conventional extraction. Food Waste Recovery: Processing Technologies and Industrial Techniques, 127-148.
http://dx.doi.org/10.1016/B978-0-12-800351-0.00006-7
---------- CHICAGO ----------
Prado, J.M., Vardanega, R., Debien, I.C.N., Meireles, M.A.D.A., Gerschenson, L.N., Sowbhagya, H.B., et al. "Conventional extraction" . Food Waste Recovery: Processing Technologies and Industrial Techniques (2015) : 127-148.
http://dx.doi.org/10.1016/B978-0-12-800351-0.00006-7
---------- MLA ----------
Prado, J.M., Vardanega, R., Debien, I.C.N., Meireles, M.A.D.A., Gerschenson, L.N., Sowbhagya, H.B., et al. "Conventional extraction" . Food Waste Recovery: Processing Technologies and Industrial Techniques, 2015, pp. 127-148.
http://dx.doi.org/10.1016/B978-0-12-800351-0.00006-7
---------- VANCOUVER ----------
Prado, J.M., Vardanega, R., Debien, I.C.N., Meireles, M.A.D.A., Gerschenson, L.N., Sowbhagya, H.B., et al. Conventional extraction. Food Waste Recovery: Process. Technol. and Ind. Techniques. 2015:127-148.
http://dx.doi.org/10.1016/B978-0-12-800351-0.00006-7