Artículo

Santagapita, P.R.; Mazzobre, M.F.; Buera, M.P.; Ramirez, H.L.; Brizuela, L.G.; Corti, H.R.; Villalonga, R. "Impact of supramolecular interactions of dextran-β-cyclodextrin polymers on invertase activity in freeze-dried systems" (2015) Biotechnology Progress. 31(3):791-798
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

β-Cyclodextrin (β-CD)-grafted dextrans with spacer arms of different length were employed to evaluate the impact of supramolecular interactions on invertase activity. The modified dextrans were used as single additives or combined with trehalose in freeze-dried formulations containing invertase. Enzyme activity conservation was analyzed after freeze-drying and thermal treatment. The change of glass transition temperature (Tg) was also evaluated and related to effective interactions. Outstanding differences on enzyme stability were mainly related to the effect of the spacer arm length on polymer-enzyme interactions, since both the degree of substitution and the molecular weight were similar for the two polymers. This change of effective interactions was also manifested in the pronounced reduction of Tg values, and were related to the chemical modification of the backbone during oxidation, and to the attachment of the β-CD units with spacer arms of different length on dextran. © 2015 American Institute of Chemical Engineers.

Registro:

Documento: Artículo
Título:Impact of supramolecular interactions of dextran-β-cyclodextrin polymers on invertase activity in freeze-dried systems
Autor:Santagapita, P.R.; Mazzobre, M.F.; Buera, M.P.; Ramirez, H.L.; Brizuela, L.G.; Corti, H.R.; Villalonga, R.
Filiación:Industry Dept., Faculty of Exact and Natural Sciences, University of Buenos Aires, Intendente Guiraldes 2160 - Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
Organic Chemistry Dept., Faculty of Exact and Natural Sciences, University of Buenos Aires, Intendente Guiraldes 2160 - Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
National Council of Scientific and Technical Research (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
Center for Enzyme Technology, University of Matanzas, Matanzas, C.P. 44740, Cuba
Dept. de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avda. General Paz 1499, San Martín, Buenos Aires, 1650, Argentina
Inst. de Química Física de los Materiales, Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Dept. of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Madrid, Av de Séneca, 2, Madrid, 28040, Spain
Palabras clave:Dextran; Enzyme stability; Glass transition temperature (Tg); Supramolecular interactions; β-cyclodextrin; Chemical modification; Cyclodextrins; Dextran; Enzyme activity; Enzymes; Glass; Polymers; Supramolecular chemistry; Temperature; Cyclodextrin polymer; Degree of substitution; Effective interactions; Enzyme interaction; Enzyme stability; Freeze-dried formulations; Invertase activity; Supramolecular interactions; Glass transition; beta cyclodextrin; beta cyclodextrin derivative; beta fructofuranosidase; dextran; glass; polymer; trehalose; chemistry; enzyme stability; freeze drying; molecular weight; transition temperature; beta-Cyclodextrins; beta-Fructofuranosidase; Dextrans; Enzyme Stability; Freeze Drying; Glass; Molecular Weight; Polymers; Transition Temperature; Trehalose
Año:2015
Volumen:31
Número:3
Página de inicio:791
Página de fin:798
DOI: http://dx.doi.org/10.1002/btpr.2067
Título revista:Biotechnology Progress
Título revista abreviado:Biotechnol. Prog.
ISSN:87567938
CODEN:BIPRE
CAS:beta cyclodextrin, 7585-39-9; beta fructofuranosidase, 9001-57-4; dextran, 87915-38-6, 9014-78-2; trehalose, 99-20-7; beta-Cyclodextrins; beta-Fructofuranosidase; betadex; Dextrans; Polymers; Trehalose
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_87567938_v31_n3_p791_Santagapita

Referencias:

  • Pikal, M.J., Mechanisms of protein stabilization during freeze-drying and storage: the relative importance of thermodynamic stabilization and glassy state relaxation dynamics (1999) Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products, pp. 161-198. , Rey L, May JC, editors. New York: Marcel Dekker Inc
  • Santagapita, P.R., Gómez Brizuela, L., Mazzobre, M.F., Ramírez, H.L., Corti, H.R., Villalonga Santana, R., Buera, M.P., Structure/function relationships of several biopolymers as related to invertase stability in dehydrated systems (2008) Biomacromolecules, 9, pp. 741-747
  • Santagapita, P.R., Gómez Brizuela, L., Mazzobre, M.F., Ramírez, H.L., Corti, H.R., Villalonga Santana, R., Buera, M.P., β-Cyclodextrin modifications as related to enzyme stability in dehydrated systems: supramolecular transitions and molecular interactions (2011) Carbohydr Polym, 83, pp. 203-209
  • Santagapita, P.R., Mazzobre, M.F., Cruz, A.G., Corti, H.R., Villalonga Santana, R., Buera, M.P., Polyethylene glycol-based low generation dendrimers functionalized with β-cyclodextrin as cryo- and dehydro-protectant of catalase formulations (2013) Biotechnol Prog, 29, pp. 786-795
  • Buera, M.P., Rossi, S., Moreno, S., Chirife, J., DCS confirmation that vitrification is not necessary for stabilization of the restriction enzyme EcoRI with saccharides (1999) Biotechnol Prog, 15, pp. 577-580
  • Mazzobre, M.F., Buera, M.P., Chirife, J., Glass transition and thermal stability of lactase in low-moisture amorphous polymeric matrices (1997) Biotechnol Progr, 13, pp. 195-199
  • Santagapita, P.R., Buera, M.P., Trehalose-water-salt interactions related to the stability of β-galactosidase in supercooled media (2008) Food Biophys, 3, pp. 87-93
  • Lee, S.L., Hafeman, A.E., Debenedetti, P.G., Pethica, B.A., Moore, D.J., Solid-state stabilization of α-chymotrypsin and catalase with carbohydrates (2006) Indust Eng Chem Res, 45, pp. 5134-5147
  • Martínez, A., Ortiz Mellet, C., García Fernández, J.M., Cyclodextrin-based multivalent glycodisplays: covalent and supramolecular conjugates to assess carbohydrate-protein interactions (2013) Chem Soc Rev, 42, pp. 4746-4773
  • Villalonga, R., Cao, R., Fragoso, A., Supramolecular chemistry of cyclodextrins in enzyme technology (2007) Chem Rev, 107, pp. 3088-3116
  • Fernández, M., Fragoso, A., Cao, R., Villalonga, R., Improved functional properties of trypsin modified by monosubstituted amino-β-cyclodextrins (2003) J Mol Catal B: Enzym, 21, pp. 133-141
  • Fernández, M., Villalonga, M.L., Caballero, J., Fragoso, A., Cao, R., Villalonga, R., Effects of β-cyclodextrin-dextran polymer on stability properties of trypsin (2003) Biotechnol Bioeng, 83, pp. 743-747
  • Sainz-Polo, M.A., Ramírez-Escudero, M., Lafraya, A., González, B., Marín-Navarro, J., Polaina, J., Sanz-Aparicio, J., Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity (2013) J Biol Chem, 288, pp. 9755-9766
  • Kaiser, C.A., Botstein, D., Secretion-defective mutations in the signal sequence for Saccharomyces cerevisiae invertase (1986) Mol Cell Biol, 6, pp. 2382-2391
  • Sperling, L.H., (2006) Introduction to Physical Polymer Science, , 4th ed. Hoboken, NJ: Wiley;
  • Ramírez, H.L., Valdivia, A., Cao, R., Torres-Labandeira, J.J., Fragoso, A., Villalonga, R., Cyclodextrin-grafted polysaccharides as supramolecular carrier systems for naproxen (2006) Bioorg Med Chem Lett, 16, pp. 1499-1501
  • Zhong, N., Byun, H.S., Bittman, R., An improved synthesis of 6-o-monotosyl-6-deoxy- β-cyclodextrin (1998) Tetrahedron Lett, 39, pp. 2919-2920
  • Bonomo, R., Cucinotta, V., D'Allesandro, F., Impellizzeri, G., Maccarrone, G., Rizzarelli, E., Vecchio, G., Coordination properties of 6-deoxy-6-[(1-(2-amino) ethylamino]-β-cyclodextrin and the ability of it copper (II) complex to recognize and separate amino acid enantiomeric pairs (1993) J Inclusion Phenom Mol Recognit Chem, 15, pp. 167-180
  • Mentzafos, D., Terzis, A., Coleman, A., Rango, C., The crystal structure of 6 I-(6-aminohexyl) amino-6 I-deoxycyclomaltoheptaose (1996) Carbohydr Res, 282, pp. 125-135
  • Schneider, H.J., Xiao, F., Binding and catalysis with a metal-induced ternary complex of an ethylenediamine-substituted cyclodextrin (1992) J Chem Soc Perkin Trans, 2, pp. 387-391
  • Greenspan, L.J., Humidity fixed points of binary saturated aqueous solutions (1977) J Res Nat Bureau Standards A: Phys Chem, 81A, pp. 89-96
  • Bernfeld, P., Amylases α and β (1955) Methods Enzymol, 1, pp. 149-158
  • Santagapita, P.R., Buera, M.P., Electrolyte effects on amorphous and supercooled sugar systems (2008) J Non-Cryst Solids, 354, pp. 1760-1767
  • Zeng, W., Du, Y., Xue, Y., Frisch, H.L., Mark-Houwink-Staundinger-Sakurada constants (2007) Physical Properties of Polymers Handbook, pp. 305-315. , Mark JE, editor. Second edition. New York: Springer Science+Business Media, Ltd
  • Flory, P.J., (1953) Principles of Polymer Chemistry, , Ithaca, NY: Cornell University Press;
  • Armstrong, J.K., Wenby, R.B., Meiselman, H.J., Fisher, T.C., The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation (2004) Biophys J, 87, pp. 4259-4270
  • de Belder, A.N., (2003) Dextran. Handbooks from Amersham Bioscience, , Uppsala: Amersham Bioscience AB;
  • Ramirez, H.L., Valdivia, A., Cao, R., Fragoso, A., Torres Labandeira, J.J., Baños, M., Villalonga, R., Preparation of β-cyclodextrin-dextran polymers and their use as supramolecular carrier systems for naproxen (2007) Pol Bull, 59, pp. 597-605
  • Angell, C.A., Sare, J.M., Sare, E.J., Glass transition temperatures for simple molecular liquids and their binary solutions (1978) J Phys Chem, 82, pp. 2622-2629
  • Icoz, D.Z., Moraru, C.I., Kokini, J.L., Polymer-polymer interactions in dextran systems using thermal analysis (2005) Carbohydr Polym, 62, pp. 120-129
  • Wolkers, W.F., Oliver, A.E., Tablin, F., Crowe, J.H., A Fourier-transform infrared spectroscopy study of sugar glasses (2004) Carbohydr Res, 339, pp. 1077-1085
  • Hemminga, M.A., van der Dries, I.J., Spin label applications to food science (1998) Biological Magnetic Resonance, Vol. 14: Spin Labeling: The Next Millennium, pp. 339-366. , Berliner LJ, editor.New York: Plenum Press;
  • Mazzobre, M.F., Hough, G., Buera, M.P., Phase transitions and functionality of enzymes and yeast in dehydrated matrices (2003) Food Sci Technol Int, 9, pp. 163-172
  • Buera, M.P., Schebor, C., Elizalde, B., Effects of carbohydrate crystallization on stability of dehydrated foods and ingredient formulations (2005) J Food Eng, 67, pp. 157-165
  • Schebor, C., Mazzobre, M.F., Buera, M.P., Glass transition and time-dependent crystallization behavior of dehydration bioprotectant sugars (2010) Carbohydr Res, 345, pp. 303-308
  • Sun, W.Q., Davidson, P., Protein inactivation in amorphous sucrose and trehalose matrices: Effects of phase separation and crystallization (1998) Biochim Biophys Acta, 1425, pp. 235-244
  • Suzuki, T., Imamura, K., Yamamoto, K., Satoh, T., Okazaki, M., Thermal stabilization of freeze-dried enzymes by sugars (1997) J Chem Eng Jpn, 30, pp. 609-613

Citas:

---------- APA ----------
Santagapita, P.R., Mazzobre, M.F., Buera, M.P., Ramirez, H.L., Brizuela, L.G., Corti, H.R. & Villalonga, R. (2015) . Impact of supramolecular interactions of dextran-β-cyclodextrin polymers on invertase activity in freeze-dried systems. Biotechnology Progress, 31(3), 791-798.
http://dx.doi.org/10.1002/btpr.2067
---------- CHICAGO ----------
Santagapita, P.R., Mazzobre, M.F., Buera, M.P., Ramirez, H.L., Brizuela, L.G., Corti, H.R., et al. "Impact of supramolecular interactions of dextran-β-cyclodextrin polymers on invertase activity in freeze-dried systems" . Biotechnology Progress 31, no. 3 (2015) : 791-798.
http://dx.doi.org/10.1002/btpr.2067
---------- MLA ----------
Santagapita, P.R., Mazzobre, M.F., Buera, M.P., Ramirez, H.L., Brizuela, L.G., Corti, H.R., et al. "Impact of supramolecular interactions of dextran-β-cyclodextrin polymers on invertase activity in freeze-dried systems" . Biotechnology Progress, vol. 31, no. 3, 2015, pp. 791-798.
http://dx.doi.org/10.1002/btpr.2067
---------- VANCOUVER ----------
Santagapita, P.R., Mazzobre, M.F., Buera, M.P., Ramirez, H.L., Brizuela, L.G., Corti, H.R., et al. Impact of supramolecular interactions of dextran-β-cyclodextrin polymers on invertase activity in freeze-dried systems. Biotechnol. Prog. 2015;31(3):791-798.
http://dx.doi.org/10.1002/btpr.2067