Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Differential scanning calorimetry thermograms of various samples of commercial instant active dry yeasts revealed a clear glass transition typical of amorphous carbohydrates and sugars. The resulting glass transition temperatures were found to decrease with increasing moisture content. The observed glass curve was similar to that of pure trehalose, which is known to accumulate in large amounts in baker's yeast. The effect of heat treatment at various temperatures on the fermentative activity (as measured by the metabolic production of CO 2 ) of dry yeast was studied. First-order plots were obtained representing the loss of fermentative activity as a function of heating time at the various temperatures assayed. Significant losses of fermentative activity were observed in vitrified yeast samples. The dependence of rate constants with temperature was found to follow Arrhenius behavior. The relationship between the loss of fermentative activity and glass transition was not verified, and the glass transition was not reflected on the temperature dependence of fermentative activity loss. Differential scanning calorimetry thermograms of various samples of commercial instant active dry yeasts revealed a clear glass transition typical of amorphous carbohydrates and sugars. The resulting glass transition temperatures were found to decrease with increasing moisture content. The observed glass curve was similar to that of pure trehalose, which is known to accumulate in large amounts in baker's yeast. The effect of heat treatment at various temperatures on the fermentative activity (as measured by the metabolic production of CO 2 ) of dry yeast was studied. First-order plots were obtained representing the loss of fermentative activity as a function of heating time at the various temperatures assayed. Significant losses of fermentative activity were observed in vitrified yeast samples. The dependence of rate constants with temperature was found to follow Arrhenius behavior. The relationship between the loss of fermentative activity and glass transition was not verified, and the glass transition was not reflected on the temperature dependence of fermentative activity loss.

Registro:

Documento: Artículo
Título:Glass transition temperatures and fermentative activity of heat-treated commercial active dry yeasts
Autor:Schebor, C.; Galvagno, M.; Del Pilar Buera, M.; Chirife, J.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
CONICET, Argentina
Palabras clave:Arrhenius behavior; Baker's yeasts; Dry yeasts; carbon dioxide; differential scanning calorimetry; fermentation; glass transition temperature; moisture; temperature; trehalose; yeast; Amorphous alloys; Bioassay; Bioconversion; Carbon dioxide; Fermentation; Glass transition; Metabolism; Rate constants; Sugars; Thermal effects; Yeast; Biotechnology; Biotechnology; Calorimetry, Differential Scanning; Carbon Dioxide; Fermentation; Heat; Temperature; Yeasts; Arrhenius
Año:2000
Volumen:16
Número:2
Página de inicio:163
Página de fin:168
DOI: http://dx.doi.org/10.1021/bp990147y
Título revista:Biotechnology Progress
Título revista abreviado:Biotechnol. Prog.
ISSN:87567938
CODEN:BIPRE
CAS:Carbon Dioxide, 124-38-9
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_87567938_v16_n2_p163_Schebor

Referencias:

  • Sun, W.Q., Leopold, C., Cytoplasmic vitrification and survival of anhydrobiotic organisms (1997) Comput. Biochem. Physiol., 117 A, pp. 327-333
  • Crowe, L.M., Reid, D.S., Crowe, J.H., Is trehalose special for preserving dry biomaterials? (1996) Biophys. J., 71, pp. 2087-2093
  • Aguilera, J.M., Karel, M., Preservation of biological materials under desiccation (1997) Crit. Rev. Food Sci. Nutr., 37, pp. 287-309
  • Szopa, J.S., Zwolinski, G., Kowal, K., Kunikka, A., Dobrowolska, I., The effect of substrate feeding on the physiological characteristics and trehalose content in Saccharomyces cerevisiae (1992) Pol. J. Food Nutr. Sci., 42, pp. 41-50
  • Diniz-Mendes, L., Bernardes, E., De Araujo, P.S., Panek, A.D., Paschoalin, V.M.F., Preservation of frozen yeast cells by trehalose (1999) Biotechnol. Bioeng., 65, pp. 572-578
  • Attfield, P.V., Raman, A., Northcott, C., Construction of Saccahromyces cerevisiae strains that accumulate relatively low concentrations of trehalose, and their application in testing the contribution of the disaccharide to stress tolerance (1992) FEBS Microbiol. Lett., 94, pp. 271-276
  • De Virgilio, C., Hottiger, T., Dominguez, J., Boller, T., Wiemken, A., The role of trehalose synthesis for the acquisition of thermotolerance in yeasts. I. Genetic evidence that trehalose is a thermoprotectant (1994) Eur. J. Biochem., 219, pp. 179-186
  • Eleutherio, E.C.A., Araujo, P.S., Panek, A.D., Protective role of trehalose during heat stress in Saccharomyces cerevisiae (1993) Cryobiology, 30, pp. 591-596
  • Hounsa, C.G., Brandt, E.V., Thevelin, J., Hohmamm, S., Prior, A., Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress (1998) Microbiology, 144, pp. 671-680
  • Crowe, J.H., Crowe, L.M., Chapman, D., Preservation of membranes in anhydrobiotic organisms: The role of trehalose (1984) Science, 293, pp. 701-703
  • Crowe, J.H., Crowe, L.M., Carpenter, J.F., Aurell, Wistrom, C., Stabilization of dry phospholipid bilayers and proteins by sugars (1987) Biochem. J., 242, pp. 1-10
  • Crowe, J.H., Carpenter, J.F., Crowe, L.M., The role of vitrification in anhydrobiosis (1998) Annu. Rev. Physiol., 60, pp. 73-103
  • Roos, Y., (1995) Phase Transitions in Foods, , Academic Press: New York
  • Burke, M.J., The vitreous state and survival of anhydrous biological systems (1986) Membranes Metabolism and Dry Organisms, pp. 358-364. , Leopold, A. C., Ed.; Cornell University Press: Ithaca, NY
  • Levine, H., Slade, L., Another view of trehalose for drying and stabilizing biological materials (1992) BioPharm., 5, pp. 36-40
  • Schebor, C., Burin, L., Buera, M.P., Chirife, J., Stability to hydrolysis and browning of trehalose, sucrose, and raffinose in low-moisture systems in relation to their use as protectants of dry biomaterials (1999) Lebensm. - Wiss. Technol., , in press
  • Attfield, P.V., Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response (1987) FEBS Lett., 225, pp. 259-263
  • Iglesias, H.A., Buera, M.P., Chirife, J., Adsorption isotherm of amorphous trehalose (1997) J. Sci. Food Agric., 75, pp. 183-186
  • Roos, Y., Karel, M., Differential scanning calorimetry study of phase transitions affecting the quality of dehydrated materials (1990) Biotechnol. Prog., 6, pp. 159-163
  • Iglesias, H.A., Chirife, J., (1992) Handbook of Food Isotherms, , Academic Press: New York
  • Bonelli, P., Schebor, C., Cukierman, A.L., Buera, M.P., Chirife, J., Residual moisture content as related to collapse of freeze-dried sugar matrices (1997) J. Food Sci., 62, pp. 693-695
  • Cardona, S., Schebor, C., Buera, M.P., Karel, M., Chirife, J., Thermal stability of invertase in reduced-moisture amorphous matrices in relation to glassy state and role of trehalose crystallization (1997) J. Food Sci., 62, pp. 105-109
  • Slade, L., Levine, H., A food polymer science approach to structure-property relationships in aqueous food systems: Nonequilibrium behavior of carbohydrate water systems (1991) Water Relationships of Foods, pp. 29-101. , Levine, H., Slade, L., Eds., Plenum Press: New York
  • Zeleznak, K.J., Hoseney, R.C., The glass transition in starch (1987) Cereal Chem., 64, pp. 121-124
  • Hoseney, R.C., Zeleznak, K., Lai, C.S., Wheat gluten: A glassy polymer (1986) Cereal Chem., 63, pp. 285-286
  • Roos, Y., Karel, M., Plasticizing effect of water on thermal behavior and crystallization of amorphous food models (1991) J. Food Sci., 34, pp. 324-329
  • Roos, Y., Karel, M., Phase transitions of mixtures of amorphous polysaccharides and sugars (1991) Biotechnol. Prog., 7, pp. 49-53
  • Chirife, J., Buera, M.P., Water activity, water/glass dynamics and the control of microbiological growth in foods (1996) Crit. Rev. Food Sci. Nutr., 36, pp. 465-487
  • Miller, D.P., De Pablo, J.J., Corti, H., Thermophysical properties of trehalose and its concentrated aqueous solutions (1997) Pharm. Res., 14, pp. 578-590
  • Williams, R.J., Leopold, C., The vitreous state in corn embryos (1989) Plant Physiol., 89, pp. 977-981
  • Sun, W.Q., Leopold, C., Glassy state and seed storage stability: A viability equation analysis (1994) Ann. Botany, 74, pp. 601-604
  • Slade, L., Levine, H., Finley, J.W., Protein-water interactions: Water as a plasticizer of gluten and other protein polymers (1989) Protein Quality and the Effects of Processing, pp. 9-124. , Phillips, R. D., Finley, J. W., Eds., Marcel Dekker: New York
  • Slade, L., Levine, H., Glass transitions and water-food structure interaction (1994) Advances in Food and Nutrition Research, 38, pp. 103-269. , Kinsella, J. E., Ed.; Academic Press: San Diego
  • Franks, F., Solid aqueous solutions (1993) Pure Appl. Chem., 65, pp. 2527-2537
  • Koster, K.L., Glass formation and desiccation tolerance in seeds (1990) Plant Physiol., 96, pp. 302-304
  • Schebor, C., Buera, M.P., Chirife, J., Glassy state in relation to the thermal inactivation of the enzyme invertase in amorphous dried matrices of trehalose, maltodextrin and PVP (1997) J. Food Eng., 30, pp. 269-273
  • Mazzobre, M.F., Buera, M.P., Chirife, J., Glass transition and thermal stability of lactase in low-moisture amorphous polymeric matrices (1997) Biotechnol. Prog., 13, p. 195
  • Karmas, R., Buera, M.P., Karel, M., Effect of glass transition on rates of nonerizymatic browning in food systems (1992) J. Agric. Food. Chem., 40, pp. 873-879
  • Bell, L.N., Hageman, M.J., Glass transition explanation for the effect of polyhydroxy componds on protein denaturation in dehydrated solids (1996) J. Food Sci., 61, pp. 372-378
  • Sun, W.Q., Leopold, C., Crowe, L., Crowe, J.H., Stability of dry liposomes in sugar glasses (1996) Biophys. J., 70, pp. 1769-1776
  • Williams, M.L., Landel, R.F., Ferry, J.D., The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids (1955) J. Am. Chem. Soc., 77, pp. 3701-3706
  • Bruni, F., Leopold, A.C., Cytoplasmic glass formation in maize embryos (1992) Seed Sci. Res., 2, pp. 251-253
  • Buera, M.P., Rossi, S., Moreno, S., Chirife, J., DSC confirmation that vitrification is not necessary for stabilization of the restriction enzyme EcoRI dried with saccharides (1999) Biotech. Prog., 15, pp. 577-580
  • Williams, R., Methods for determination of glass transitions in seeds (1994) Ann. Botany, 74, pp. 525-530
  • Hancock, B., Zografi, G., Characteristics and significance of the amorphous state in pharmaceutical systems (1997) J. Pharm. Sci., 86, pp. 1-12

Citas:

---------- APA ----------
Schebor, C., Galvagno, M., Del Pilar Buera, M. & Chirife, J. (2000) . Glass transition temperatures and fermentative activity of heat-treated commercial active dry yeasts. Biotechnology Progress, 16(2), 163-168.
http://dx.doi.org/10.1021/bp990147y
---------- CHICAGO ----------
Schebor, C., Galvagno, M., Del Pilar Buera, M., Chirife, J. "Glass transition temperatures and fermentative activity of heat-treated commercial active dry yeasts" . Biotechnology Progress 16, no. 2 (2000) : 163-168.
http://dx.doi.org/10.1021/bp990147y
---------- MLA ----------
Schebor, C., Galvagno, M., Del Pilar Buera, M., Chirife, J. "Glass transition temperatures and fermentative activity of heat-treated commercial active dry yeasts" . Biotechnology Progress, vol. 16, no. 2, 2000, pp. 163-168.
http://dx.doi.org/10.1021/bp990147y
---------- VANCOUVER ----------
Schebor, C., Galvagno, M., Del Pilar Buera, M., Chirife, J. Glass transition temperatures and fermentative activity of heat-treated commercial active dry yeasts. Biotechnol. Prog. 2000;16(2):163-168.
http://dx.doi.org/10.1021/bp990147y