Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A microbial bioreactor based on calcium alginate immobilized Lactobacillus cells coupled to a pH electrode was developed for quantitative determination of carbohydrate fermentation activity. A high biomass (1010 cfu mL-1) and particular pregrowth conditions were needed. Reduction of catabolite repression by monosaccharides was achieved by pregrowth in lactose. The evolution of acid production in a continuous flow-stopped flow bioreactor was monitored for different sugar solutions in contact with the immobilized bacteria. The resulting slopes (ΔmV/Δt) were used to quantify the fermentation capability for a defined sugar related to that of glucose, which was taken as 100%. The procedure is simple, being based on pH variation that can give quantitative results compared to other reported techniques for carbohydrate fermentation pattern from which only qualitative results are obtained. In addition, it offers reduction in time and costs and is a suitable tool for the rapid analysis of isolated strains and in studies of modifications of sugar metabolism in mutants. A microbial bioreactor based on calcium alginate immobilized Lactobacillus cells coupled to a pH electrode was developed for quantitative determination of carbohydrate fermentation activity. A high biomass (1010 cfu mL-1) and particular pregrowth conditions were needed. Reduction of catabolite repression by monosaccharides was achieved by pregrowth in lactose. The evolution of acid production in a continuous flow-stopped flow bioreactor was monitored for different sugar solutions in contact with the immobilized bacteria. The resulting slopes (ΔmV/Δt) were used to quantify the fermentation capability for a defined sugar related to that of glucose, which was taken as 100%. The procedure is simple, being based on pH variation that can give quantitative results compared to other reported techniques for carbohydrate fermentation pattern from which only qualitative results are obtained. In addition, it offers reduction in time and costs and is a suitable tool for the rapid analysis of isolated strains and in studies of modifications of sugar metabolism in mutants.

Registro:

Documento: Artículo
Título:Characterization of Lactobacillus carbohydrate fermentation activity using immobilized cell technique
Autor:Cortón, E.; Piuri, M.; Battaglini, F.; Ruzal, S.M.
Filiación:Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, 4 piso, (1428) Buenos Aires, Argentina
Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina
Palabras clave:Calcium alginate; Catabolite; Lactobacillus; Lactose; Monosaccharides; bacterial mutant; biomass; bioreactor; carbohydrate; catabolite repression; colony forming unit; electrode; fermentation; immobilized biomass; immobilized cell culture; lactose; pH; quantitative analysis; Bacteria; Biomass; Bioreactors; Calcium compounds; Carbohydrates; Cell immobilization; Glucose; Growth kinetics; Metabolism; pH; Reduction; Fermentation; Biomass; Bioreactors; Biotechnology; Carbohydrate Metabolism; Cells, Immobilized; Fermentation; Hydrogen-Ion Concentration; Lactobacillus; Lactobacillus casei; Species Specificity; Bacteria (microorganisms); Lactobacillus
Año:2000
Volumen:16
Número:1
Página de inicio:59
Página de fin:63
DOI: http://dx.doi.org/10.1021/bp9901217
Título revista:Biotechnology Progress
Título revista abreviado:Biotechnol. Prog.
ISSN:87567938
CODEN:BIPRE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_87567938_v16_n1_p59_Corton

Referencias:

  • Vignolo, G.M., Pesce De Ruiz Holgado, A., Oliver, G., Acid production and proteolytic activity of Lactobacillus strains isolated from dry sausages (1988) J. Food Prot., 51, pp. 481-484
  • Olsen, N.F., The impact of lactic acid bacteria on cheese flavor (1990) FEMS Microbiol. Rev., 87, pp. 131-148
  • Schillinger, U., Lucke, E.K., Identification of lactobacilli from meat and meat products (1987) Food Microbiol., 4, pp. 199-208
  • Lauret, R., Morel-Deville, F., Berthier, F., Champomier-Verges, M., Postma, P., Ehrlich, D., Zagorec, M., Carbohydrate utilization in Lactobacillus sake (1996) Appl. Environ. Microbiol., 62, pp. 1922-1927
  • Riedel, K., Lehmann, M., Adler, K., Kunze, G., Physiological characterization of a microbial sensor containing the yeast Arxula adeninivorans LS3 (1997) Antonie van Leewenhoek, 71, pp. 345-351
  • Riedel, C., Kunze, G., Rapid physiological characterization of microorganisms by biosensor technique (1997) Microbiol. Res., 152, pp. 233-237
  • Champagne, C.P., Lacroix, C., Sodini-Gallot, I., Immobilized cell technologies for dairy industry (1994) Crit. Rev. Biotechnol., 14, pp. 109-134
  • Sodini, I., Boquien, C.Y., Corrieu, G., Lacroix, C., Use of an immobilized cell bioreactor for the continuous inoculation of milk in fresh cheese manufacturing (1997) J. Ind. Microbiol. Biotechnol., 18, pp. 56-61
  • Senthuran, A., Senthuran, V., Mattiasson, B., Kaul, R., Lactic acid fermentation in a recycle batch reactor using immobilized lactobacillus casei (1997) Biotechnol. Bioeng., 55, pp. 841-853
  • Øyaas, J., Storro, I., Levine, D.W., Uptake of lactose and continuous lactic acid fermentation by entrapped nongrowing lactobacillus helveticus in whey permeate (1996) Appl. Microbiol. Biotechnol., 46, pp. 240-249
  • Saier M.H., Jr., Chauvaux, S., Cook, G.M., Deutscher, J., Paulsen, I.T., Reizer, J., Ye, J.J., Catabolite repression and inducer control in Gram-positive bacteria (1996) Microbiology, 142, pp. 217-230
  • Saier M.H., Jr., Regulatory interactions controlling carbon metabolism: An overview (1996) Res. Microbiol., 147, pp. 439-447
  • Saier M.H., Jr., Crasnier, M., Inducer exclusion and the regulation of sugar transport (1996) Res. Microbiol., 147, pp. 482-489
  • Veyrat, A., Monedero, V., Perez-Martinez, G., Glucose transport by the phosphoenolpyruvate: Mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression (1994) Microbiology, 140, pp. 1141-1149
  • Thompson, J., Sugar transport in lactic acid bacteriain (1990) Sugar Transport and Metabolism in Gram-positive Bacteria, pp. 13-38. , Reizer, J., Peterkofsky, A., Eds.; Ellis Horwood Limited Publishers: Chichester
  • Kandler, O., Weiss, N., Regular, nonsporing Gram-positive rods (1986) Bergey's Manual of Systematic Bacteriology, 2. , Holt, J. G., Ed.; Williams & Wilkins Company: Baltimore; Section 13
  • Romano, A.H., Brino, G., Peterkofsky, A., Reizer, J., Regulation of β-galactosidase transport and accumulation in heterofermentative lactic acid bacteria (1987) J. Bacteriol., 169, pp. 5589-5596
  • Ye, J.J., Neal, J.W., Cui, X., Reizer, J., Saier M.H., Jr., Regulation of the glucose:H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis (1994) J. Bacteriol., 176, pp. 3484-3492

Citas:

---------- APA ----------
Cortón, E., Piuri, M., Battaglini, F. & Ruzal, S.M. (2000) . Characterization of Lactobacillus carbohydrate fermentation activity using immobilized cell technique. Biotechnology Progress, 16(1), 59-63.
http://dx.doi.org/10.1021/bp9901217
---------- CHICAGO ----------
Cortón, E., Piuri, M., Battaglini, F., Ruzal, S.M. "Characterization of Lactobacillus carbohydrate fermentation activity using immobilized cell technique" . Biotechnology Progress 16, no. 1 (2000) : 59-63.
http://dx.doi.org/10.1021/bp9901217
---------- MLA ----------
Cortón, E., Piuri, M., Battaglini, F., Ruzal, S.M. "Characterization of Lactobacillus carbohydrate fermentation activity using immobilized cell technique" . Biotechnology Progress, vol. 16, no. 1, 2000, pp. 59-63.
http://dx.doi.org/10.1021/bp9901217
---------- VANCOUVER ----------
Cortón, E., Piuri, M., Battaglini, F., Ruzal, S.M. Characterization of Lactobacillus carbohydrate fermentation activity using immobilized cell technique. Biotechnol. Prog. 2000;16(1):59-63.
http://dx.doi.org/10.1021/bp9901217