Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The thermal stability of a commercial preparation of neutral lactase (β-galactosidase) in low-moisture amorphous polymeric matrices of maltodextrin (MD dextrose equivalent (D.E.) = 10.9) and polyvinylpyrrolidone (PVP; MW 40 000) stored at various temperatures (T) was studied. The main objective was to analyze the usefulness of the glass transition temperature (T(g)) as a parameter for predicting the thermal stability of lactase in low-moisture glass-forming matrices. Loss of enzyme activity was observed during storage in glassy conditions (either in PVP or MD matrices), suggesting that, although molecular mobility may be significantly decreased in the glassy state, the protein molecule is still mobile enough to lead to enzyme inactivation. The results indicated that the change from the glassy to the rubbery state of the PVP matrix, where the enzyme was embedded, was not reflected in drastic changes in the temperature dependence of the thermal inactivation rate, as expected if it could be only predicted on the basis of physical changes of the matrices. The plasticizing effect of water is not the only factor to take into account when considering enzymatic stability in heated low-moisture amorphous systems.

Registro:

Documento: Artículo
Título:Glass transition and thermal stability of lactase in low-moisture amorphous polymeric matrices
Autor:Mazzobre, M.F.; Buera, M.D.P.; Chirife, J.
Filiación:Departamento de Industrias, Fac. de Ciencias Exactas y Naturales, Ciudad Universitaria, (1428) Buenos Aires, Argentina
Año:1997
Volumen:13
Número:2
Página de inicio:195
Página de fin:199
DOI: http://dx.doi.org/10.1021/bp9700014
Título revista:Biotechnology Progress
Título revista abreviado:BIOTECHNOL. PROG.
ISSN:87567938
CODEN:BIPRE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_87567938_v13_n2_p195_Mazzobre

Referencias:

  • Aguilera, J.M., Levi, G., Karel, M., Effect of water content on the glass transition and caking of fish protein hydrolyzates (1994) Biotechnol. Prog., 9, pp. 651-654
  • Bell, L.N., Hageman, M.J., Glass transition explanation for the effect of polyhydroxy compounds on protein denaturation in dehydrated solids (1996) J. Food Sci., 61 (2), pp. 372-374
  • Buera, M.P., Levi, G., Karel, M., Glass transition in polyvinylpyrrolidone: Effect of molecular weight and diluents (1992) Biotechnol. Prog., 8, pp. 144-148
  • Buera, M.P., Chirife, J., Karel, M., A study of acid-catalyzed sucrose hydrolysis in an amorphous polymeric matrix at reduced moisture contents (1995) Food Res. Int., 28, pp. 359-365
  • Colaço, C., Sen, S., Thangavelu, M., Pinder, S., Roser, B., Extraordinary stability of enzymes dried in trehalose: Simplified molecular biology (1992) Bio/Technology, 10, pp. 1007-1010
  • De Graaf, E.M., Makeda, H., Cocero, A.M., Kokini, J.L., Determination of the effect of moisture on gliadin glass transition using mechanical spectrometry and differential scanning calorimetry (1993) Biotechnol. Prog., 9, pp. 210-213
  • Franks, F., Solid aqueus solutions (1993) Pure Appl. Chem., 65, pp. 2527-2537
  • Hori, T., Fujita, Y., Simizu, T., Diffusion of disperse dyes into Nylon 6 above and below the glass transition temperature (1986) J. Soc. Dyers Colour, 62, pp. 181-185
  • Hoseney, R.C., Zeleznak, K., Lai, C.S., Wheat gluten: A glassy polymer (1986) Cereal Chem., 63, pp. 285-286
  • Jaenicke, R., Enzymes under extremes of physical conditions (1981) Ann. Rev. Biophys. Bioeng., 10, pp. 1-67
  • Kalichevsky, M.T., Blanshard, J.M.V., Marsch, R.D.L., Effect of water content and sugars on the glass transition of casein and sodium caseinate (1993) Int. J. Food Sci. Technol., 28, pp. 139-151
  • Karel, M., Saguy, I., Effects of water on diffusion in food systems (1991) Water Relationships in Foods, pp. 157-174. , Levine, H., Slade, L., Eds.; New York: Plenum Press
  • Karel, M., Buera, M.P., Roos, Y., Effect of glass transitions on processing and storage (1993) The Science and Technology of the Glassy State in Foods, , Blanshard, J. M. V., Lillford, P. J., Eds.; Chapter 2
  • Karel, M., Angela, S., Buera, M.P., Karmas, R., Levi, G., Roos, Y., Stability-related transitions of amorphous foods (1995) Thermochim. Acta, 246, pp. 249-269
  • Karmas, R., Buera, M.P., Karel, M., Effect of glass transition on rates of non-enzymatic browning in food systems (1992) J. Agric. Sci., 40, pp. 837-879
  • Klibanov, A.M., Enzyme stabilization by inmobilization (1979) Anal. Biochem., 93, pp. 1-25
  • Kovarskii, A.L., Placek, J., Szocs, F., Study of rotational mobility of stable nitroxides radicals in solid polymers (1978) Polymer, 19, pp. 1137-1141
  • Levine, H., Slade, L., Glass transitions in foods (1992) Physical Chemistry of Foods, pp. 83-221. , Eds.; Schwartzberg, H. G., Hartel, R. W., Eds.; Marcel Dekker, Inc.: New York
  • Levine, H., Slade, L., Another view of trehalose for drying and stabilizing biological materials (1992) BioPharm, 5, pp. 36-40
  • Mahoney, R.R., Wilder, T., Enhanced thermostability of lactase (Escherichia coli) in milk (1987) J. Food Sci., 52 (6), pp. 1730-1731
  • Mazzobre, M.F., Buera, M.P., Chirife, J., Protective role of trehalose on thermal stability of lactase in relation to its glass and crystal forming properties and effect of delaying crystallization (1997) Lebensm.-Wiss. Technol., , in press
  • Multon, J.L., Guilbot, Water activity in relation to the thermal inactivation of enzymic proteins (1975) Water Relations of Foods, pp. 379-396. , Duckworth, R. B., Ed.; Academic Press: New York
  • Noel, T.R., Parker, R., Ring, S.G., Kinetic processes in highly viscous, aqueus carbohydrate liquids (1995) Food Macromolecules and Colloids, pp. 543-551. , Dickinson, E., Lorient, D., Eds.; Royal Society of Chemistry: Cambridge, U.K
  • Palumbo, M.S., Smith, P.W., Strange, E.D., Van Hekken, D.L., Tunick, M.H., Holsinger, V.H., Stability of β-galactosidase from Aspergillus oryzae and Kluyveromyces lactis in dry milk powders (1995) J. Food Sci., 60, pp. 117-119
  • Roos, Y., (1995) Phase Transitions in Foods, , Academic Press: New York
  • Roos, Y., Karel, M., Differential scanning Calorimetry study of phase transitions affecting quality of dehydrated materials (1990) Biotechnol. Prog., 6, pp. 159-163
  • Roos, Y., Karel, M., Plasticizing effect of water on thermal behavior and crystallization of amorphous food models (1991) J. Food Sci., 34, pp. 342-349
  • Roos, Y., Karel, M., Phase transitions of mixtures of amorphous polysaccharides and sugars (1991) Biotechnol. Prog., 7, pp. 49-53
  • Roos, Y., Karel, M., Crystallization of amorphous lactose (1992) J. Food Sci., 57, pp. 775-777
  • Sapru, V., Labuza, T.P., Glassy state in bacterial spores predicted by polymer glass-transition theory (1993) J. Food Sci., 58, pp. 445-448
  • Schebor, C., Buera, M.P., Chirife, J., Glassy state in relation to the thermal inactivation of enzyme invertase in amorphous dried matrices of trehalose, maltodextrin and PVP (1996) J. Food Eng., 30, pp. 269-282
  • Simatos, D., Blond, G., Perez, J., Basic physical aspects of glass-transition (1995) Food Preservation by Moisture Control, pp. 3-31. , Barbosa-Cánovas, G. V., Welti-Chanes, J., Eds.; Technomic Pub. Co. Inc.: Lancaster, PA
  • Slade, L., Levine, H., Glass-transitions and water-food structure interactions (1994) Advances in Food and Nutrition Research, 38. , Kinsella, J. E., Eds.; Academic Press: San Diego, CA
  • Slade, L., Levine, H., Finley, J.W., Protein-water interactions: Water as a plasticizer of gluten and other protein polymers (1989) Protein Quality and the Effects of Processing, pp. 9-142. , Phillips, R. D., Finley, J. W., Eds.; Marcel Dekker, Inc.: New York
  • Sun, W.Q., Leopold, C., Glassy state and seed storage stability: A viability equation analysis (1994) Ann. Bot., 74, pp. 601-604
  • Vrentas, J.S., Duda, J.L., A free-volume interpretation of the influence of the glass transition on diffusion in amorphous polymers (1978) J. Appl. Polym. Sci., 22, p. 2325
  • Whitaker, J.R., Enzyme action in aqueous systems with special emphasis on intermediate and high moisture foods (1995) Food Preservation by Moisture Control, pp. 255-277. , Barbosa-Cánovas, G. V., Welti-Chanes, J., Eds.; Technomic Pub. Co., Inc.: Lancaster, PA
  • Williams, M.L., Landel, R.F., Ferry, J.D., The temperature dependence of relaxation mechanisms in amorphous polymers and other glass forming liquids (1955) J. Am. Chem. Soc., 77, pp. 3701-3707

Citas:

---------- APA ----------
Mazzobre, M.F., Buera, M.D.P. & Chirife, J. (1997) . Glass transition and thermal stability of lactase in low-moisture amorphous polymeric matrices. Biotechnology Progress, 13(2), 195-199.
http://dx.doi.org/10.1021/bp9700014
---------- CHICAGO ----------
Mazzobre, M.F., Buera, M.D.P., Chirife, J. "Glass transition and thermal stability of lactase in low-moisture amorphous polymeric matrices" . Biotechnology Progress 13, no. 2 (1997) : 195-199.
http://dx.doi.org/10.1021/bp9700014
---------- MLA ----------
Mazzobre, M.F., Buera, M.D.P., Chirife, J. "Glass transition and thermal stability of lactase in low-moisture amorphous polymeric matrices" . Biotechnology Progress, vol. 13, no. 2, 1997, pp. 195-199.
http://dx.doi.org/10.1021/bp9700014
---------- VANCOUVER ----------
Mazzobre, M.F., Buera, M.D.P., Chirife, J. Glass transition and thermal stability of lactase in low-moisture amorphous polymeric matrices. BIOTECHNOL. PROG. 1997;13(2):195-199.
http://dx.doi.org/10.1021/bp9700014