Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background: Two different mitochondrial fractions (MFs) have been characterized in the human placenta: the “light” and “heavy” fractions (LMF and HMF). Although these organelles are the main source of reactive oxygen species, an imbalance between their production and the rate of detoxification represents a serious threat to mitochondrial homeostasis and, in the case of the placenta, also to the fetus. The aim of this study was to evaluate the antioxidant capacity and susceptibility to oxidative stress in both types of MFs. Methods: Human MFs were isolated from healthy donors (n = 11) and either incubated or not with H2O2. Catalase (CAT) activity, and reduced glutathione (GSH), lipid peroxidation (LP), and protein carbonylation (PC) levels were determined. Results: H2O2 treatment increased LP and PC levels and decreased CAT activity. GSH levels were similar in control and treated MFs. Conclusion: H2O2 caused oxidative damage in both LMF and HMF and the antioxidant system measured in these two MFs responded similarly. To the best of our knowledge, this is the first partial description of the antioxidant defense in placental HMF and LMF performed in a cell-free assay. The small number of antioxidant system parameters measured did not allow detecting differences between HMF and LMF. © 2018 Wiley Periodicals, Inc.

Registro:

Documento: Artículo
Título:Susceptibility of placental mitochondria to oxidative stress
Autor:Papa Gobbi, R.; Magnarelli, G.; Rovedatti, M.G.
Filiación:Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), CONICET, Universidad Nacional del Comahue, Neuquén, Argentina
Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Cipolletti, Río Negro, Argentina
Instituto de Estudios Inmunológicos y Fisiopatológicos –IIFP (CONICET‐Facultad de Ciencias Exactas, Universidad Nacional de La Plata), La Plata, Buenos Aires, Argentina
Departamento de Biodiversidad y Biología Experimental and Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:mitochondria; oxidative stress; placenta; reactive oxygen species; catalase; glutathione; hydrogen peroxide; malonaldehyde; adult; antioxidant activity; Article; cell isolation; controlled study; enzymatic assay; enzyme activity; female; human; human tissue; lipid peroxidation; mitochondrion; normal human; oxidation; oxidative stress; placenta; protein carbonylation; protein determination; spectrophotometry
Año:2018
Volumen:110
Número:16
Página de inicio:1228
Página de fin:1232
DOI: http://dx.doi.org/10.1002/bdr2.1377
Título revista:Birth Defects Research
Título revista abreviado:Birth Defects Res.
ISSN:24721727
CAS:catalase, 9001-05-2; glutathione, 70-18-8; hydrogen peroxide, 7722-84-1; malonaldehyde, 542-78-9
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24721727_v110_n16_p1228_PapaGobbi

Referencias:

  • Bustamante, J., Ramírez-Vélez, R., Czerniczyniec, A., Cicerchia, D., Aguilar de Plata, A.C., Oxygen metabolism in human placenta mitochondria (2014) Journal of Bioenergetics and Biomembranes, 46, pp. 459-469. , https://doi.org/10.1007/s10863-014-9572-x, Lores-Arnaiz., S
  • Chiapella, G., Genti-Raimondi, S., Magnarelli, G., Placental oxidative status in rural residents environmentally exposed to organophosphates (2014) Environmental Toxicology and Pharmacology, 38, pp. 220-229. , https://doi.org/10.1016/j.etap.2014.06.001
  • Fagan, J.M., Sleczka, B.G., Sohar, I., Quantitation of oxidative damage to tissue proteins (1999) The International Journal of Biochemistry & Cell Biology, 31, pp. 751-757. , PMID 10467731
  • Ferree, A., Shirihai, O., Mitochondrial dynamics: The intersection of form and function (2012) Advances in Experimental Medicine and Biology, 748, pp. 13-40. , https://doi.org/10.1007/978-1-4614-3573-0_2
  • Franco, R., Sánchez-Olea, R., Reyes-Reyes, E.M., Panayiotidis, M.I., Environmental toxicity, oxidative stress and apoptosis: Ménage Trois (2009) Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 674, pp. 3-22. , https://doi.org/10.1016/j.mrgentox.2008.11.012
  • Halliwell, B., Antioxidant characterization. Methodology and mechanism (1995) Biochemical Pharmacology, 49, pp. 1341-1348. , PMID 7763275
  • Holland, O., Nitert, M.N., Gallo, L.A., Vejzovic, M., Fisher, J.J., Perkins, A.V., Review: Placental mitochondrial function and structure in gestational disorders (2017) Placenta, 54, pp. 2-9. , https://doi.org/10.1016/j.placenta.2016.12.012
  • Honzík, T., Drahota, Z., Böhm, M., Jesina, P., Mrácek, T., Paul, J., Houstek, J., Specific properties of heavy fraction of mitochondria from human-term placenta - glycerophosphate-dependent hydrogen peroxide production (2006) Placenta, 27, pp. 348-356. , https://doi.org/10.1016/j.placenta.2005.03.010
  • Illsley, N.P., Glucose transporters in the human placenta (2000) Placenta, 21, pp. 14-22. , https://doi.org/10.1053/plac.1999.0448
  • Ji, L., Brkić, J., Liu, M., Fu, G., Peng, C., Wang, Y.L., Placental trophoblast cell differentiation: Physiological regulation and pathological relevance to preeclampsia (2013) Molecular Aspects of Medicine, 34, pp. 981-1023. , https://doi.org/10.1016/j.mam.2012.12.008
  • Kowaltowski, A.J., Vercesi, A.E., Mitochondrial damage induced by conditions of oxidative stress (2009) Free Radical Biology and Medicine, 26, pp. 463-471. , &, PMID 9895239
  • Li, X., Zhang, M., Pan, X., Xu, Z., Sun, M., "Three hits" hypothesis for developmental origins of health and diseases in view of cardiovascular abnormalities (2017) Birth Defects Research, 109 (10), pp. 744-757. , https://doi.org/10.1002/bdr2.1037
  • Martinez, F., Kiriakidou, M., Strauss, J.F., Structural and functional changes in mitochondria associated with trophoblast differentiation: Methods to isolate enriched preparations of syncytiotrophoblast mitochondria (1997) Endocrinology, 138, pp. 2172-2183. , https://doi.org/10.1210/endo.138.5.5133
  • Natarajan, S.K., Thangaraj, K.R., Eapen, C.E., Ramachandran, A., Mukhopadhya, A., Mathai, M., Balasubramanian, K.A., Liver injury in acute fatty liver of pregnancy: Possible link to placental mitochondrial dysfunction and oxidative stress (2010) Hepatology, 51, pp. 191-200. , https://doi.org/10.1002/hep.23245
  • Poston, L., Raijmakers, M.T.M., Trophoblast oxidative stress, antioxidants and pregnancy outcome - a review (2004) Placenta, 25, pp. 72-78. , https://doi.org/10.1016/j.placenta.2004.01.003
  • Rivero Osimani, V.L., Valdez, S.R., Guiñazú, N., Magnarelli, G., Alteration of syncytiotrophoblast mitochondria function and endothelial nitric oxide synthase expression in the placenta of rural residents (2016) Reproductive Toxicology, 61, pp. 47-57. , https://doi.org/10.1016/j.reprotox.2016.02.018
  • Shibata, E., Nanri, H., Ejima, K., Araki, M., Fukuda, J., Yoshimura, K., Kashimura, M., Enhancement of mitochondrial oxidative stress and up-regulation of antioxidant protein peroxiredoxin III/SP-22 in the mitochondria of human pre-eclamptic placentae (2003) Placenta, 24, pp. 698-705. , https://doi.org/10.1016/S0143-4004(03)00083-3
  • Tabassum, H., Waseem, M., Parvez, S., Qureshi, M.I., Oxaliplatin-induced oxidative stress provokes toxicity in isolated rat liver mitochondria (2015) Archives of Medical Research, 46, pp. 597-603. , https://doi.org/10.1016/j.arcmed.2015.10.002
  • Tietze, F., Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues (1969) Analytical Biochemistry, 27, pp. 502-522. , https://doi.org/10.1016/0003-2697
  • Veerbeek, J.H.W., Tissot Van Patot, M.C., Burton, G.J., Yung, H.W., Endoplasmic reticulum stress is induced in the human placenta during labour (2015) Placenta, 36, pp. 88-92. , https://doi.org/10.1016/j.placenta.2014.11.005
  • Vera, B., Santa, C.S., Magnarelli, G., Plasma cholinesterase and carboxylesterase activities and nuclear and mitochondrial lipid composition of human placenta associated with maternal exposure to pesticides (2012) Reproductive Toxicology, 34, pp. 402-407. , https://doi.org/10.1016/j.reprotox.2012.04.007
  • Wahlländer, A., Soboll, S., Sies, H., Linke, I., Müller, M., Hepatic mitochondrial and cytosolic glutathione content and the subcellular distribution of GSH-S-transferases (1979) FEBS Letters, 97, pp. 138-140. , https://doi.org/10.1016/0014-5793(79)80069-1
  • Watson, A.L., Skepper, J.N., Jauniaux, E., Burton, G.J., Changes in concentration, localization and activity of catalase within the human placenta during early gestation (1998) Placenta, 19, pp. 27-34. , PMID 9481782
  • Wigle, D.T., Arbuckle, T.E., Turner, M.C., Bérubé, A., Yang, Q., Liu, S., Krewski, D., Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants (2008) Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 11, pp. 373-517. , https://doi.org/10.1080/10937400801921320

Citas:

---------- APA ----------
Papa Gobbi, R., Magnarelli, G. & Rovedatti, M.G. (2018) . Susceptibility of placental mitochondria to oxidative stress. Birth Defects Research, 110(16), 1228-1232.
http://dx.doi.org/10.1002/bdr2.1377
---------- CHICAGO ----------
Papa Gobbi, R., Magnarelli, G., Rovedatti, M.G. "Susceptibility of placental mitochondria to oxidative stress" . Birth Defects Research 110, no. 16 (2018) : 1228-1232.
http://dx.doi.org/10.1002/bdr2.1377
---------- MLA ----------
Papa Gobbi, R., Magnarelli, G., Rovedatti, M.G. "Susceptibility of placental mitochondria to oxidative stress" . Birth Defects Research, vol. 110, no. 16, 2018, pp. 1228-1232.
http://dx.doi.org/10.1002/bdr2.1377
---------- VANCOUVER ----------
Papa Gobbi, R., Magnarelli, G., Rovedatti, M.G. Susceptibility of placental mitochondria to oxidative stress. Birth Defects Res. 2018;110(16):1228-1232.
http://dx.doi.org/10.1002/bdr2.1377