Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Six Mn-Schiff base complexes, [Mn(X-salpn)]0/+ (salpn = 1,3-bis(sal-ic-ylidenamino)propane, X = H [1], 5-Cl [2], 2,5-F2 [3], 3,5-Cl2 [4], 5-NO2 [5], 3,5-(NO2)2 [6]), were synthesized and characterized in solution, and second-sphere effects on their electrochemical and spectroscopic properties were analyzed. The six complexes catalyze the dismutation of superoxide with catalytic rate constants in the range 0.65 to 1.54 × 106 M-1 s-1 obtained through the nitro blue tetrazolium photoreduction inhibition superoxide dismutases assay, in aqueous medium of pH 7.8. In solution, these compounds possess two labile solvent molecules in the axial positions favoring coordination of the highly nucleophilic O2 •- to the metal center. Even complex 5, [Mn(5-(NO2)salpn) (OAc) (H2O)], with an axial acetate in the solid state, behaves as a 1:1 electrolyte in methanolic solution. Electron paramagnetic resonance and UV-vis monitoring of the reaction of [Mn(X-salpn)]0/+ with KO2 demonstrates that in diluted solutions these complexes behave as catalysts supporting several additions of excess O2 •-, but at high complex concentrations (≥0.75 mM) catalyst self-inhibition occurs by the formation of a catalytically inactive dimer. The correlation of spectroscopic, electrochemical, and kinetics data suggest that second-sphere effects control the oxidation states of Mn involved in the O2 •- dismutation cycle catalyzed by complexes 1-6 and modulate the strength of the Mn-substrate adduct for electron-transfer through an inner-sphere mechanism. © 2019 American Chemical Society.

Registro:

Documento: Artículo
Título:Insights into Second-Sphere Effects on Redox Potentials, Spectroscopic Properties, and Superoxide Dismutase Activity of Manganese Complexes with Schiff-Base Ligands
Autor:Palopoli, C.; Ferreyra, J.; Conte-Daban, A.; Richezzi, M.; Foi, A.; Doctorovich, F.; Anxolabéhère-Mallart, E.; Hureau, C.; Signorella, S.R.
Filiación:IQUIR (Instituto de Química Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario, S2002LRK, Argentina
LCC-CNRS, Université de Toulouse, 205 route de Narbonne, Toulouse, 31077, France
Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Laboratoire d'Electrochimie Moléculaire UMR CNRS-P7 7591, Université Paris Diderot-Paris, 15 rue Jean-Antoine de Baïf, Paris Cedex 13, 75205, France
Año:2019
Volumen:4
Número:1
Página de inicio:48
Página de fin:57
DOI: http://dx.doi.org/10.1021/acsomega.8b03018
Título revista:ACS Omega
Título revista abreviado:ACS Omega
ISSN:24701343
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24701343_v4_n1_p48_Palopoli

Referencias:

  • Abreu, I.A., Cabelli, D.E., Superoxide dismutases-a review of the metal-associated mechanistic variations (2010) Biochim. Biophys. Acta, 1804, pp. 263-274
  • Sheng, Y., Abreu, I.A., Cabelli, D.E., Maroney, M.J., Miller, A.-F., Teixeira, M., Valentine, J.S., Superoxide dismutases and superoxide reductases (2014) Chem. Rev., 114, pp. 3854-3918
  • Rhee, S.G., Chang, T.-S., Jeong, W., Kang, D., Methods for detection and measurement of hydrogen peroxide inside and outside of cells (2010) Mol. Cells, 29, pp. 539-549
  • Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., Collin, F., Oxidative stress and the amyloid beta peptide in Alzheimer's disease (2018) Redox Biol., 14, pp. 450-464
  • Day, B.J., Catalase and glutathione peroxidase mimics (2009) Biochem. Pharmacol., 77, pp. 285-296
  • Batinic-Haberle, I., Tovmasyan, A., Roberts, E.R.H., Vujaskovic, Z., Leong, K.W., Spasojevic, I., SOD therapeutics: Latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways (2014) Antioxid. Redox Signaling, 20, pp. 2372-2415
  • Policar, C., Reboucas, J.S., Batinic-Haberle, I., Spasojevic, I., Warner, D.S., St. Clair, D., Mimicking SOD, Why and How: Bio-Inspired Manganese Complexes as SOD Mimic (2016) Redox Active Therapeutics, pp. 125-164. , Springer: Berlin
  • Mjos, K.D., Orvig, C., Metallodrugs in medicinal inorganic chemistry (2014) Chem. Rev., 114, pp. 4540-4563
  • Cuzzocrea, S., Riley, D.P., Caputi, A.P., Salvemini, D., Antioxidant therapy: A new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury (2001) Pharmacol Rev., 53, pp. 135-159
  • Anderson, C.M., Allen, B.G., Sun, W., Lee, C.M., Agarwala, S., Venigalla, M., Greenberg, L., Buatti, J., Phase 1b/2a trial of superoxide (SO) dismutase (SOD) mimetic GC4419 to reduce chemoradiation therapy-induced oral mucositis (OM) in patients with oral cavity or oropharyngeal carcinoma (OCC) (2016) Int. J. Radiat. Oncol., Biol., Phys., 94, pp. 869-870
  • Kinnula, V.L., Crapo, J.D., Superoxide dismutases in the lung and human lung diseases (2003) Am. J. Respir. Crit. Care Med., 167, pp. 1600-1619
  • Rong, Y., Doctrow, S.R., Tocco, G., Baudry, M., EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology (1999) Proc. Natl. Acad. Sci. U.S.A., 96, pp. 9897-9902
  • Brazier, M.W., Doctrow, S.R., Masters, C.L., Collins, S.J., A manganese-superoxide dismutase/catalase mimetic extends survival in a mouse model of human prion disease (2008) Free Radical Biol. Med., 45, pp. 184-192
  • Doctrow, S., Liesa, M., Melov, S., Shirihai, O., Tofilon, P., Salen Mn complexes are superoxide dismutase/catalase mimetics that protect the mitochondria (2012) Curr. Inorg. Chem., 2, pp. 325-334
  • Signorella, S., Palopoli, C., Ledesma, G., Rationally designed mimics of antioxidant manganoenzymes: Role of structural features in the quest for catalysts with catalase and superoxide dismutase activity (2018) Coord. Chem. Rev., 365, pp. 75-102
  • Bosch, S., Comba, P., Gahan, L.R., Schenk, G., Dinuclear Zinc(II) complexes with hydrogen bond donors as structural and functional phosphatase models (2014) Inorg. Chem., 53, pp. 9036-9051
  • Camargo, T.P., Neves, A., Peralta, R.A., Chaves, C., Maia, E.C.P., Lizarazo-Jaimes, E.H., Gomes, D.A., Schenk, G., Second-sphere effects in dinuclear FeIIIZnII hydrolase biomimetics: Tuning binding and reactivity properties (2017) Inorg. Chem., 57, pp. 187-203
  • Erxleben, A., Transition metal salen complexes in bioinorganic and medicinal chemistry (2018) Inorg. Chim. Acta, 472, pp. 40-57
  • Larson, E.J., Pecoraro, V.L., The peroxide-dependent μ2-O bond formation of manganese complex [Mn(IV)SALPN(O)]2 (1991) J. Am. Chem. Soc., 113, pp. 3810-3818
  • Bermejo, M.R., Fondo, M., Garcia-Deibe, A., Rey, M., Sanmartin, J., Sousa, A., Watkinson, M., Pritchard, R.G., The diversity observed in manganese(III) complexes of tetradentate Schiff base ligands: An assessment of structural trends (1996) Polyhedron, 15, pp. 4185-4194
  • Vázquez-Fernández, M., Bermejo, M.R., Fernández-García, M.I., González-Riopedre, G., Rodríguez-Doutón, M.J., Maneiro, M., Influence of the geometry around the manganese ion on the peroxidase and catalase activities of Mn(III)-Schiff base complexes (2011) J. Inorg. Biochem., 105, pp. 1538-1547
  • Maneiro, M., Bermejo, M.R., Fondo, M., González, A.M., Sanmartín, J., García-Monteagudo, J.C., Pritchard, R.G., Tyryshkin, A.M., Structural and photolytic studies on new mononuclear and binuclear manganese complexes containing Schiff base ligands. the crystal structure of [Mn(μ-3,5-Brsalpn)(μ-O)]2·2DMF (2001) Polyhedron, 20, pp. 711-719
  • Palopoli, C., Gómez, G., Foi, A., Doctorovich, F., Mallet-Ladeira, S., Hureau, C., Signorella, S., Dimerization, redox properties and antioxidant activity of two manganese(III) complexes of difluoro- and dichloro-substituted Schiff-base ligands (2017) J. Inorg. Biochem., 167, pp. 49-59
  • Bonadies, J.A., Maroney, M.J., Pecoraro, V.L., Structurally diverse manganese(III) Schiff base complexes: Solution speciation via paramagnetic proton NMR spectroscopy and electrochemistry (1989) Inorg. Chem., 28, pp. 2044-2051
  • Caudle, M.T., Riggs-Gelasco, P., Gelasco, A.K., Penner-Hahn, J.E., Pecoraro, V.L., Mechanism for the homolytic cleavage of alkyl hydroperoxides by the manganese(III) dimer MnIII2(2-OHsalpn)2 (1996) Inorg. Chem., 35, pp. 3577-3584
  • Hoogenraad, M., Ramkisoensing, K., Driessen, W.L., Kooijman, H., Spek, A.L., Bouwman, E., Haasnoot, J.G., Reedijk, J., Catalytic and electrochemical properties of new manganese(III) compounds of 2-(2′-hydroxyphenyl)-oxazoline (Hphox or HClphox). Molecular structures of [Mn(Clphox)2(MeOH)2](ClO4) and [Mn(phox)2(MeOH)2][Mn(phox)2(ClO4)2] (H2O)2 (2001) Inorg. Chim. Acta, 320, pp. 117-126
  • Shova, S., Vlad, A., Cazacu, M., Krzystek, J., Bucinsky, L., Breza, M., Darvasiová, D., Arion, V.B., A five-coordinate manganese(III) complex of a salen type ligand with a positive axial anisotropy parameter D (2017) Dalton Trans., 46, pp. 11817-11829
  • Tadyszak, K., Rudowicz, C., Ohta, H., Sakurai, T., Electron magnetic resonance data on high-spin Mn(III; S = 2) ions in porphyrinic and salen complexes modeled by microscopic spin Hamiltonian approach (2017) J. Inorg. Biochem., 175, pp. 36-46
  • Gahan, L.R., Grillo, V.A., Hambley, T.W., Hanson, G.R., Hawkins, C.J., Proudfoot, E.M., Moubaraki, B., Wang, D., Synthetic, X-ray structure, electron paramagnetic resonance, and magnetic studies of the manganese(II) complex of 1-thia-4,7-diazacyclononane ([9]aneN2S) (1996) Inorg. Chem., 35, pp. 1039-1044
  • Groni, S., Hureau, C., Guillot, R., Blondin, G., Blain, G., Anxolabéhère-Mallart, E., Characterizations of chloro and aqua Mn(II) mononuclear complexes with amino-pyridine ligands. Comparison of their electrochemical properties with those of Fe(II) counterparts (2008) Inorg. Chem., 47, pp. 11783-11797
  • Hureau, C., Blondin, G., Charlot, M.-F., Philouze, C., Nierlich, M., Césario, M., Anxolabéhère-Mallart, E., Synthesis, structure, and characterization of new mononuclear Mn(II) complexes. Electrochemical conversion into new oxo-bridged Mn2(III,IV) complexes. Role of chloride ions (2005) Inorg. Chem., 44, pp. 3669-3683
  • Hureau, C., Groni, S., Guillot, R., Blondin, G., Duboc, C., Anxolabéhère-Mallart, E., Syntheses, X-ray structures, solid state high-field electron paramagnetic resonance, and density-functional theory investigations on chloro and aqua MnII mononuclear complexes with amino-pyridine pentadentate ligands (2008) Inorg. Chem., 47, pp. 9238-9247
  • Takahata, Y., Chong, D.P., Estimation of Hammett sigma constants of substituted benzenes through accurate density-functional calculation of core-electron binding energy shifts (2005) Int. J. Quantum Chem., 103, pp. 509-515
  • Hureau, C., Sabater, L., Gonnet, F., Blain, G., Sainton, J., Anxolabéhère-Mallart, E., Chemical access to the mononuclear Mn(III) [(mL)Mn(OMe)]+ complex (mLH = N,N′-bis-(2-pyridylmethyl)-N-(2-hydroxybenzyl)-N′-methyl-ethane-1,2-diamine) and electrochemical oxidation to the Mn(IV) [(mL)Mn(OMe)]2+ species (2006) Inorg. Chim. Acta, 359, pp. 339-345
  • Dubois, L., Xiang, D.-F., Tan, X.-S., Pécaut, J., Jones, P., Baudron, S., Le Pape, L., Deronzier, A., Binuclear manganese compounds of potential biological significance. Syntheses and structural, magnetic, and electrochemical properties of dimanganese(II) and -(II,III) complexes of a bridging unsymmetrical phenolate ligand (2003) Inorg. Chem., 42, pp. 750-760
  • Bermejo, M.R., González, A.M., Fondo, M., García-Deibe, A., Maneiro, M., Sanmartín, J., Hoyos, O.L., Watkinson, M., A direct route to obtain manganese(III) complexes with a new class of asymmetrical Schiff base ligands (2000) New J. Chem., 24, pp. 235-241
  • Bermejo, M.R., González-Noya, A.M., Abad, V., Fernández, M.I., Maneiro, M., Pedrido, R., Vásquez, M., Formation of novel 1-D chains by μ-amido bridging of dinuclear manganese(III)-Schiff base complexes (2004) Eur. J. Inorg. Chem., pp. 3696-3705
  • Li, X., Pecoraro, V.L., Stepwise, metal-assisted decarboxylation promoted by manganese: Reactivity relationship between manganese and vanadium (1989) Inorg. Chem., 28, pp. 3403-3410
  • González-Riopedre, G., Fernández-García, M., Gómez-Fórneas, E., Maneiro, M., Biomimetic catalysts for oxidation of veratryl alcohol, a lignin model compound (2013) Catalysts, 3, pp. 232-246
  • Bermejo, M.R., Castineiras, A., Garcia-Monteagudo, J.C., Rey, M., Sousa, A., Watkinson, M., McAuliffe, C.A., Beddoes, R.L., Electronic and steric effects in manganese Schiff-base complexes as models for the water oxidation complex in photosystem II. the isolation of manganese-(II) and -(III) complexes of 3- and 3,5-substituted N,N′-bis(salicylidene)ethane-1,2-diamine (H2salen) ligands (1996) J. Chem. Soc., Dalton Trans., pp. 2935-2944
  • Doctrow, S.R., Huffman, K., Marcus, C.B., Tocco, G., Malfroy, E., Adinolfi, C.A., Kruk, H., Malfroy, B., Salen-manganese complexes as catalytic scavengers of hydrogen peroxide and cytoprotective agents: Structure-activity relationship studies (2002) J. Med. Chem., 45, pp. 4549-4558
  • Watanabe, Y., Namba, A., Umezawa, N., Kawahata, M., Yamaguchi, K., Higuchi, T., Enhanced catalase-like activity of manganese salen complexes in water: Effect of a three-dimensionally fixed auxiliary (2006) Chem. Commun., pp. 4958-4960
  • Moreno, D., Daier, V., Palopoli, C., Tuchagues, J.-P., Signorella, S., Synthesis, characterization and antioxidant activity of water soluble MnIII complexes of sulphonato-substituted Schiff base ligands (2010) J. Inorg. Biochem., 104, pp. 496-502
  • Bian, H.-D., Wang, J., Wei, Y., Tang, J., Huang, F.-P., Yao, D., Yu, Q., Liang, H., Superoxide dismutase activity studies of Mn(III)/Cu(II)/Ni(II) complexes with Schiff base ligands (2015) Polyhedron, 90, pp. 147-153
  • Zhang, X.-M., Tang, J., Wang, L.-N., Yao, D., Yu, Q., Huang, F.-P., Bian, H.-D., Superoxide dismutase activity studies of Mn(III)/Co(III)/Fe(III) complexes with Schiff base ligands (2017) Polyhedron, 133, pp. 433-440
  • Daier, V., Moreno, D., Duhayon, C., Tuchagues, J.-P., Signorella, S., Synthesis, characterization and combined superoxide dismutase and catalase activities of manganese complexes of 1,4-bis(salicylidenamino)butan-2-ol (2010) Eur. J. Inorg. Chem., 2010, pp. 965-974
  • Signorella, S., Daier, V., Ledesma, G., Palopoli, C., Back, D.F., Lang, E.S., Kopp, C.R., Piquini, P.C., Synthesis, structure and SOD activity of Mn complexes with symmetric Schiff base ligands derived from pyridoxal (2015) Polyhedron, 102, pp. 176-184
  • Costa, R.O., Ferreira, S.S., Pereira, C.A., Harmer, J.R., Noble, C.J., Schenk, G., Franco, R.W.A., Horn, A., A new mixed-valence Mn(II)Mn(III) compound with catalase and superoxide dismutase activities (2018) Front. Chem., 6, p. 491
  • Durot, S., Policar, C., Cisnetti, F., Lambert, F., Renault, J.-P., Pelosi, G., Blain, G., Mahy, J.-P., Series of Mn complexes based on N-centered ligands and superoxide reactivity in an anhydrous medium and SOD-like activity in an aqueous medium correlated to MnII/MnIII redox potentials (2005) Eur. J. Inorg. Chem., 2005, pp. 3513-3523
  • Batinic-Haberle, I., Spasojevic, I., Stevens, R.D., Hambright, P., Neta, P., Okado-Matsumoto, A., Fridovich, I., New class of potent catalysts of O2 - dismutation. Mn(III) ortho-methoxyethylpyridyl- and di-ortho-methoxyethylimidazolylporphyrins (2004) Dalton Trans., pp. 1696-1702
  • Lieb, D., Friedel, F.C., Yawer, M., Zahl, A., Khusniyarov, M.M., Heinemann, F.W., Ivanović-Burmazović, I., Dinuclear seven-coordinate Mn(II) complexes: Effect of manganese(II)-hydroxo species on water exchange and superoxide dismutase activity (2012) Inorg. Chem., 52, pp. 222-236
  • Campbell, K.A., Lashley, M.R., Wyatt, J.K., Nantz, M.H., Britt, R.D., Dual-mode EPR study of Mn(III) salen and the Mn(III) salen-catalyzed epoxidation of cis-β-methylstyrene (2001) J. Am. Chem. Soc., 123, pp. 5710-5719
  • Schäfer, K.-O., Bittl, R., Lendzian, F., Barynin, V., Weyhermüller, T., Wieghardt, K., Lubitz, W., Multifrequency EPR investigation of dimanganese catalase and related Mn(III)Mn(IV) complexes (2003) J. Phys. Chem. B, 107, pp. 1242-1250
  • Hureau, C., Blondin, G., Cesario, M., Un, S., Direct measurement of the hyperfine and g-tensors of a Mn(III)-Mn(IV) complex in polycrystalline and frozen solution samples by high-field EPR (2003) J. Am. Chem. Soc., 125, pp. 11637-11645
  • Hureau, C., Blanchard, S., Nierlich, M., Blain, G., Rivière, E., Girerd, J.-J., Anxolabéhère-Mallart, E., Blondin, G., Controlled redox conversion of new X-ray-characterized mono- and dinuclear heptacoordinated Mn(II) complexes into di-μ-oxo-dimanganese core complexes (2004) Inorg. Chem., 43, pp. 4415-4426
  • Larson, E.J., Riggs, P.J., Penner-Hahn, J.E., Pecoraro, V.L., Protonation of [{MnIV(saltn)(μ-O)}2] results in significant modification of structure and catalase-like reactivity (1992) J. Chem. Soc., Chem. Commun., pp. 102-103
  • Bagchi, R.N., Bond, A.M., Scholz, F., Stoesser, R., Characterization of the ESR spectrum of the superoxide anion in the liquid phase (1989) J. Am. Chem. Soc., 111, pp. 8270-8271
  • Ivanović-Burmazović, I., Van Eldik, R., Metal complex-assisted activation of small molecules. from NO to superoxide and peroxides (2008) Dalton Trans., pp. 5259-5275
  • Liu, G.-F., Filipović, M., Heinemann, F.W., Ivanović-Burmazović, I., Seven-coordinate iron and manganese complexes with acyclic and rigid pentadentate chelates and their superoxide dismutase activity (2007) Inorg. Chem., 46, pp. 8825-8835
  • Liu, G.-F., Dürr, K., Puchta, R., Heinemann, F.W., Van Eldik, R., Ivanović-Burmazović, I., Chelate electronic properties control the redox behaviour and superoxide reactivity of seven-coordinate manganese(II) complexes (2009) Dalton Trans., pp. 6292-6295
  • Hong, S., Sutherlin, K.D., Park, J., Kwon, E., Siegler, M.A., Solomon, E.I., Nam, W., Crystallographic and spectroscopic characterization and reactivities of a mononuclear non-haem iron(III)-superoxo complex (2014) Nat. Commun., 5, p. 5440
  • Maroz, A., Kelso, G.F., Smith, R.A.J., Ware, D.C., Anderson, R.F., Pulse radiolysis investigation on the mechanism of the catalytic action of Mn(II)-pentaazamacrocycle compounds as superoxide dismutase mimetics (2008) J. Phys. Chem. A, 112, pp. 4929-4935
  • Leto, D.F., Chattopadhyay, S., Day, V.W., Jackson, T.A., Reaction landscape of a pentadentate N5-ligated MnII complex with O2 - and H2O2 includes conversion of a peroxomanganese(III) adduct to a bis(μ-oxo)dimanganese(III,IV) species (2013) Dalton Trans., 42, pp. 13014-13025
  • Gohdes, J.W., Armstrong, W.H., Synthesis, structure, and properties of [Mn(salpn)(EtOH)2](ClO4) and its aerobic oxidation product [Mn(salpn)O]2 (1992) Inorg. Chem., 31, pp. 368-373
  • Beauchamp, C., Fridovich, I., Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels (1971) Anal. Biochem., 44, pp. 276-287
  • Liao, Z.-R., Zheng, X.-F., Luo, B.-S., Shen, L.-R., Li, D.-F., Liu, H.-L., Zhao, W., Synthesis, characterization and SOD-like activities of manganese-containing complexes with N,N,N′,N′-tetrakis(2′-benzimidazolylmethyl)-1,2-ethanediamine (EDTB) (2001) Polyhedron, 20, pp. 2813-2821
  • Hyland, K., Auclair, C., The formation of superoxide radical anions by a reaction between O2, OH- and dimethyl sulfoxide (1981) Biochem. Biophys. Res. Commun., 102, pp. 531-537
  • Sheldrick, G.M., (1997) Program for the Refinement of Crystal Structures from Diffraction Data, , University of Göttingen: Göttingen, Germany
  • Sheldrick, G.M., Crystal structure refinement with SHELXL (2015) Acta Crystallogr., Sect. C: Struct. Chem., 71, pp. 3-8

Citas:

---------- APA ----------
Palopoli, C., Ferreyra, J., Conte-Daban, A., Richezzi, M., Foi, A., Doctorovich, F., Anxolabéhère-Mallart, E.,..., Signorella, S.R. (2019) . Insights into Second-Sphere Effects on Redox Potentials, Spectroscopic Properties, and Superoxide Dismutase Activity of Manganese Complexes with Schiff-Base Ligands. ACS Omega, 4(1), 48-57.
http://dx.doi.org/10.1021/acsomega.8b03018
---------- CHICAGO ----------
Palopoli, C., Ferreyra, J., Conte-Daban, A., Richezzi, M., Foi, A., Doctorovich, F., et al. "Insights into Second-Sphere Effects on Redox Potentials, Spectroscopic Properties, and Superoxide Dismutase Activity of Manganese Complexes with Schiff-Base Ligands" . ACS Omega 4, no. 1 (2019) : 48-57.
http://dx.doi.org/10.1021/acsomega.8b03018
---------- MLA ----------
Palopoli, C., Ferreyra, J., Conte-Daban, A., Richezzi, M., Foi, A., Doctorovich, F., et al. "Insights into Second-Sphere Effects on Redox Potentials, Spectroscopic Properties, and Superoxide Dismutase Activity of Manganese Complexes with Schiff-Base Ligands" . ACS Omega, vol. 4, no. 1, 2019, pp. 48-57.
http://dx.doi.org/10.1021/acsomega.8b03018
---------- VANCOUVER ----------
Palopoli, C., Ferreyra, J., Conte-Daban, A., Richezzi, M., Foi, A., Doctorovich, F., et al. Insights into Second-Sphere Effects on Redox Potentials, Spectroscopic Properties, and Superoxide Dismutase Activity of Manganese Complexes with Schiff-Base Ligands. ACS Omega. 2019;4(1):48-57.
http://dx.doi.org/10.1021/acsomega.8b03018