Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Glycol ethers, or glymes, have been recognized as good candidates as solvents for lithium-air batteries because they exhibit relatively good stability in the presence of superoxide radicals. Diglyme (bis(2-methoxy-ethyl)ether), in spite of its low donor number, has been found to promote the solution mechanism for the formation of Li2O2 during the discharge reaction, leading to large deposits, that is, high capacities. It has been suggested that lithium salt association in these types of solvents could be responsible for this behavior. Thus, the knowledge of the speciation and transport behavior of lithium salts in these types of solvents is relevant for the optimization of the lithium-air battery performance. In this work, a comprehensive study of lithium trifluoromethanesulfonate (LiTf) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1,2-di-methoxyethane (DME) and diglyme, over a wide range of concentrations, have been performed. Consistent ion pairs and triplet ions formation constants have been obtained by resorting to well-known equations that describe the concentration dependence of the molar conductivities in highly associated electrolytes, and we found that the system LiTf/DME would be the best to promote bulky Li2O2 deposits. Unexpected differences are observed for the association constants of LiTf and, to a lesser extent, for LiTFSI, in DME and diglyme, whose dielectric constants are similar. Molecular dynamics (MD) simulations allowed us to rationalize these differences in terms of the competing interactions of the O-sites of the ethers and the SOx groups of the corresponding anions with Li+ ion. The limiting Li+ diffusivity derived from the fractional Walden rule agrees quite well with those obtained from MD simulations, when solvent viscosity is conveniently rescaled. © 2018 American Chemical Society.

Registro:

Documento: Artículo
Título:Ionic Transport and Speciation of Lithium Salts in Glymes: Experimental and Theoretical Results for Electrolytes of Interest for Lithium-Air Batteries
Autor:Horwitz, G.; Factorovich, M.; Rodriguez, J.; Laria, D.; Corti, H.R.
Filiación:Instituto de Química Física de Los Materiales, Medio Ambiente y Energía, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avda. General Paz 1499, San-Martín, Buenos Aires, 1650, Argentina
Instituto de Nanociencia y Nanotecnología (INN CNEA-CONICET), Buenos Aires, 1650, Argentina
ECyT, UNSAM, Martín de Irigoyen 3100, San-Martín, Buenos Aires, 1650, Argentina
Año:2018
Volumen:3
Número:9
Página de inicio:11205
Página de fin:11215
DOI: http://dx.doi.org/10.1021/acsomega.8b01443
Título revista:ACS Omega
Título revista abreviado:ACS Omega
ISSN:24701343
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24701343_v3_n9_p11205_Horwitz

Referencias:

  • Bruce, P.G., Freunberger, S.A., Hardwick, L.J., Tarascon, J.-M., Li-O2 and Li-S batteries with high energy storage (2012) Nat. Mater., 11, pp. 19-29
  • Girishkumar, G., McCloskey, B., Lunz, A.C., Swanson, S., Wilcke, W., Lithium-air battery: Promise and challenges (2010) J. Phys. Chem. Lett., 1, pp. 2193-2203
  • Husch, T., Korth, M., Charting the known chemical space for non-aqueous lithium-air battery electrolyte solvents (2015) Phys. Chem. Chem. Phys., 17, pp. 22596-22603
  • Lee, S.-Y., Ueno, K., Angell, C.A., Lithium salt solutions in mixed sulfone and sulfone-carbonate solvents: A Walden plot analysis of the maximally conductive compositions (2012) J. Phys. Chem. C, 116, pp. 23915-23920
  • Abraham, K.M., Jiang, Z., A polymer electrolyte-based rechargeable lithium/oxygen battery (1996) J. Electrochem. Soc., 143, pp. 1-5
  • Débart, A., Paterson, A.J., Bao, J., Bruce, P.G., α-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries (2008) Angew. Chem., 120, pp. 4597-4600
  • Albertus, P., Girishkumar, G., McCloskey, B., Sánchez-Carrera, R.S., Kozinsky, B., Christensen, J., Luntz, A.C., Identifying capacity limitations in the Li/oxygen battery using experiments and modeling batteries and energy storage (2011) J. Electrochem. Soc., 158, pp. A343-A351
  • Bryantsev, V.S., Blanco, M., Computational study of the mechanisms of superoxide-induced decomposition of organic carbonate-based electrolytes (2011) J. Phys. Chem. Lett., 2, pp. 379-383
  • Freunberger, S.A., Chen, Y., Peng, Z., Griffin, J.M., Hardwick, L.J., Bardé, F., Novák, P., Bruce, P.G., Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes (2011) J. Am. Chem. Soc., 133, pp. 8040-8047
  • McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G., Luntz, A.C., Solvents' critical role in nonaqueous lithium-oxygen battery electrochemistry (2011) J. Phys. Chem. Lett., 2, pp. 1161-1166
  • Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A., Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery (2010) J. Phys. Chem. C, 114, pp. 9178-9186
  • Johnson, L., Li, C., Liu, Z., Chen, Y., Freunberger, S.A., Tarascon, J.-M., Ashok, P.C., Bruce, P.G., The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries (2014) Nat. Chem., 6, pp. 1091-1099
  • Peng, Z., Freunberger, S.A., Chen, Y., Bruce, P.G., A reversible and higher-rate Li-O2 battery (2012) Science, 337, pp. 563-566
  • McCloskey, B.D., Valery, A., Luntz, A.C., Gowda, S.R., Wallraff, G.M., Garcia, J.M., Mori, T., Krupp, L.E., Combining accurate O2 and Li2O2 assays to separate discharge and charge stability limitations in nonaqueous Li-O2 batteries (2013) J. Phys. Chem. Lett., 4, pp. 2989-2993
  • Sharon, D., Afri, M., Noked, M., Garsuch, A., Frimer, A.A., Aurbach, D., Oxidation of dimethyl sulfoxide solutions by electrochemical reduction of oxygen (2013) J. Phys. Chem. Lett., 4, pp. 3115-3119
  • Kwabi, D.G., Batcho, T.P., Amanchukwu, C.V., Ortiz-Vitoriano, N., Hammond, P., Thompson, C.V., Shao-Horn, Y., Chemical instability of dimethyl sulfoxide in lithium-air batteries (2014) J. Phys. Chem. Lett., 5, pp. 2850-2856
  • Freunberger, S.A., Chen, Y., Drewett, N.E., Hardwick, L.J., Bardé, F., Bruce, P.G., The lithium-oxygen battery with ether-based electrolytes (2011) Angew. Chem., Int. Ed., 50, pp. 8609-8613
  • Laoire, C.O., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., Rechargeable lithium/TEGDME- LiPF6/O2 battery (2011) J. Electrochem. Soc., 158, pp. A302-A308
  • Bryantsev, V.S., Giordani, B., Wlaker, W., Blanco, M., Zecevic, S., Sasaki, K., Uddin, J., Chase, J.V., Predicting solvent stability in aprotic electrolyte Li-air batteries: Nucleophilic substitution by the superoxide anion radical (O2 •-) (2011) J. Phys. Chem. A, 115, pp. 12399-12409
  • Schwenke, K.U., Meini, S., Wu, X., Gasteiger, H.A., Piana, M., Stability of superoxide radicals in glyme solvents for non-aqueous Li-O2 battery electrolytes (2013) Phys. Chem. Chem. Phys., 15, pp. 11830-11839
  • Tamura, T., Yoshida, K., Hachida, T., Tsichiya, M., Nakamura, M., Kazue, Y., Tachikawa, N., Watanabe, M., Physicochemical properties of glyme-Li salt complexes as a new family of room-temperature ionic liquids (2010) Chem. Lett., 39, pp. 753-755
  • Du, P., Lu, J., Lau, K.C., Luo, X., Bareño, J., Zhang, X., Ren, Y., Amine, K., Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li-O2batteries (2013) Phys. Chem. Chem. Phys., 15, pp. 5572-5581
  • Sharon, D., Hirsberg, D., Salama, M., Afri, M., Frimer, A.A., Noked, M., Kwak, W., Aurbach, D., Mechanistic role of Li+ dissociation level in aprotic Li-O2 battery (2016) ACS Appl. Mater. Interfaces, 8, pp. 5300-5307
  • Burke, C.M., Pande, V., Khetan, A., Viswanathan, V., McCloskey, B.D., Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O2battery capacity (2015) Proc. Natl. Acad. Sci. U.S.A., 112, pp. 9293-9298
  • Khetan, A., Arjmandi, H.R., Pande, V., Pitsch, H., Viswanathan, V., Understanding ion pairing in high-salt concentration electrolytes using classical molecular dynamics simulations and its implications for nonaqueous Li-O2 batteries (2018) J. Phys. Chem. C, 122, pp. 8094-8101
  • Petrowsky, M., Frech, R., Suarez, S.N., Jayakody, J.R.P., Greenbaum, S., Investigation of fundamental transport properties and thermodynamics in diglyme-salt solutions (2006) J. Phys. Chem. B, 110, pp. 23012-23021
  • Brouillette, D., Perron, G., Desnoyers, J.E., Apparent molar volume, heat capacity, and conductance of lithium bis(trifluoromethylsulfone) imide in glymes and other aprotic solvents (1998) J. Solution Chem., 27, pp. 151-182
  • Fuoss, R.M., Kraus, C.A., Properties of electrolytic solutions. IV. The conductance minimum and the formation of triple ions due to the action of coulomb forces (1933) J. Am. Chem. Soc., 55, pp. 2387-2399
  • Barthel, J., Gerber, R., Gores, H.J., The temperature dependence of the properties of electrolyte solutions. VI. Triple ion formation in solvents of low permittivity exemplified by LiBF4 solutions in dimethoxyethane (1984) Ber. Bunsenges. Phys. Chem., 88, pp. 616-622
  • Laría, D., Corti, H.R., Fernández Prini, R., The cluster theory for electrolyte solutions: Its extension and its limitations (1990) J. Chem. Soc., Faraday Trans., 86, pp. 1051-1056
  • Okan, S.E., Champeney, D.C., Molar conductance of aqueous solutions of sodium, potassium, and nickel trifluoromethanesulfonate at 25 °c (1997) J. Solution Chem., 26, pp. 405-414
  • Fuoss, R.M., Kraus, C.A., Properties of electrolytic solutions. IV. the conductance minimum and the formation of triple ions due to the action of coulomb forces (1933) J. Am. Chem. Soc., 55, pp. 2387-2399
  • Fuoss, R.M., Hsia, K.L., Association of 1-1 salts in water (1967) Proc. Natl. Acad. Sci. U.S.A., 57, pp. 1550-1557
  • Fernández-Prini, R., Conductance of electrolyte solutions. A modified expression for its concentration dependence (1969) Trans. Faraday Soc., 65, pp. 3311-3315
  • Salomon, M., Uchiyama, M.C., Treatment of triple ion formation (1987) J. Solution Chem., 16, pp. 21-30
  • Longinotti, M.P., Corti, H.R., Fractional Walden rule for electrolytes in supercooled disaccharide aqueous solutions (2009) J. Phys. Chem. B, 113, pp. 5500-5507
  • Boileau, S., Hemery, P., Conductance of some tetraphenylboron and fluorenyl salts in tetrahydropyran (1976) Electrochim. Acta, 21, pp. 647-655
  • Claude-Montigny, B., Rioteau, E., Lemordant, D., Topart, P., Bosser, G., Theory of ionic conduction in organic solvents and gel electrolytes: Application to the system DG/LiCF3SO3 and diacrylate/DG/LiCF3SO3 (2001) Electrochim. Acta, 47, pp. 533-541
  • Plewa, A., Kalita, M., Siekierski, M., Estimation of ion pair formation in mixtures of glymes and 1,4-dioxane (2007) Electrochim. Acta, 53, pp. 1527-1534
  • Plewa-Marczewska, A., Kalita, M., Marczewski, M., Siekierski, M., NMR studies of equilibrium in electrolytes. Ionic pairing in glymes (2010) Electrochim. Acta, 55, pp. 1389-1395
  • Prue, J.E., Ion pairs and complexes: Free energies, enthalpies, and entropies (1969) J. Chem. Educ., 46, pp. 12-16
  • Dhumal, N.R., Gejji, S.P., Theoretical studies on blue versus red shifts in diglyme-M+-X- (M = Li, Na, and K and X = CF3SO3, PF6, and (CF3SO2)2N)) (2006) J. Phys. Chem. A, 110, pp. 219-227
  • Matsui, T., Takeyama, K., Li+ adsorption on a metal electrode from glymes (1998) Electrochim. Acta, 43, pp. 1355-1360
  • Kwabi, D.G., Bryantsev, V.S., Batcho, T.P., Itkis, D.M., Thompson, C.-V., Shao-Horn, Y., Experimental and computational analysis of the solvent-dependent O2/Li+-O2 - redox couple: Standard potentials, coupling strength, and implications for lithium-oxygen batteries (2016) Angew. Chem., Int. Ed., 55, pp. 3129-3134
  • Callsen, M., Sodeyama, K., Fureta, K., Tateyama, Y., Hamada, I., The solvation structure of lithium ions in an ether based electrolyte solution from first-principles molecular dynamics (2017) J. Phys. Chem. B, 121, pp. 180-188
  • Shinoda, W., Hatanaka, Y., Hirakawa, M., Okazaki, S., Tsuziki, S., Ueno, K., Watanabe, M., Molecular dynamics study of thermodynamic stability and dynamics of [Li(glyme)]+ complex in lithium-glyme solvate ionic liquids (2018) J. Chem. Phys., 148, p. 193809
  • Park, C., Kanduč, M., Chudoba, R., Ronneburg, A., Risse, S., Ballauf, M., Dzubiella, J., Molecular simulations of electrolyte structure and dynamics in lithium-sulfur battery solvents (2018) J. Power Sources, 373, pp. 70-78
  • Rhodes, C.P., Frech, R., Local structure in crystalline and amorphous phases of diglyme-LiCF3SO3 and poly(ethylene oxide)- LiCF3SO3 systems: Implications for the mechanism of ionic transport (2001) Macromolecules, 34, pp. 2660-2666
  • Brouillette, D., Irish, D.E., Taylor, N.J., Perron, G., Odziemkowski, M., Desnoyers, J.E., Stable solvates in solution of lithium bis(trifluoromethylsulfonate)imide in glymes and other aprotic solvents: Phase diagrams, crystallography and Raman spectroscopy (2002) Phys. Chem. Chem. Phys., 4, pp. 6063-6071
  • Cussler, E.L., (1997) Diffusion: Mass Transfer in Fluid Systems, , 2 nd ed. Cambridge University Press
  • Haase, R., (1963) Thermodynamics of Irreversible Processes, , Dover: New York
  • Barbosa, N.S.V., Zhang, Y., Lima, E.R.A., Tavares, F.W., Maginn, E.J., Development of an AMBER-compatible transferable force field for poly(ethylene glycol)ethers (glymes) (2017) J. Mol. Model., 23, p. 194
  • Hayamizu, K., Aihara, Y., Arai, S., García Martínez, C., Pulse-gradient spin-echo 1H, 7Li, and 19F NMR diffusion and ionic conductivity measurements of 14 organic electrolytes containing LiN(SO2CF3)2 (1999) J. Phys. Chem. B, 103, pp. 519-524
  • Barthel, J., Feuerlein, F., Neueder, R., Wachter, R., Calibration of conductance cells at various temperatures (1980) J. Solution Chem., 9, pp. 209-219
  • Horinek, D., Mamatkulov, S.I., Netz, R.R., Rational design of ion forces fields based on thermodynamic solvation properties (2009) J. Chem. Phys., 130, p. 124507
  • Lopes, J.N.C., Pádua, A.A.H., Molecular force field for ionic liquids composed of triflate or bistriflimide anion (2004) J. Phys. Chem. B, 108, pp. 16893-16898
  • Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., Scalable molecular dynamics with NAMD (2005) J. Comput. Chem., 26, pp. 1781-1802
  • Darve, E., Pohorille, A.J., Calculating free energies using average force (2001) J. Chem. Phys., 115, pp. 9169-9183
  • Hénin, J., Chipot, C.J., Overcoming free energy barriers using unconstrained molecular dynamics simulations (2004) J. Chem. Phys., 121, pp. 2904-2914
  • Rodriguez-Gomez, D., Darve, E., Pohorille, A.J., Assessing the efficiency of free energy calculation methods (2004) J. Chem. Phys., 120, pp. 3563-3578

Citas:

---------- APA ----------
Horwitz, G., Factorovich, M., Rodriguez, J., Laria, D. & Corti, H.R. (2018) . Ionic Transport and Speciation of Lithium Salts in Glymes: Experimental and Theoretical Results for Electrolytes of Interest for Lithium-Air Batteries. ACS Omega, 3(9), 11205-11215.
http://dx.doi.org/10.1021/acsomega.8b01443
---------- CHICAGO ----------
Horwitz, G., Factorovich, M., Rodriguez, J., Laria, D., Corti, H.R. "Ionic Transport and Speciation of Lithium Salts in Glymes: Experimental and Theoretical Results for Electrolytes of Interest for Lithium-Air Batteries" . ACS Omega 3, no. 9 (2018) : 11205-11215.
http://dx.doi.org/10.1021/acsomega.8b01443
---------- MLA ----------
Horwitz, G., Factorovich, M., Rodriguez, J., Laria, D., Corti, H.R. "Ionic Transport and Speciation of Lithium Salts in Glymes: Experimental and Theoretical Results for Electrolytes of Interest for Lithium-Air Batteries" . ACS Omega, vol. 3, no. 9, 2018, pp. 11205-11215.
http://dx.doi.org/10.1021/acsomega.8b01443
---------- VANCOUVER ----------
Horwitz, G., Factorovich, M., Rodriguez, J., Laria, D., Corti, H.R. Ionic Transport and Speciation of Lithium Salts in Glymes: Experimental and Theoretical Results for Electrolytes of Interest for Lithium-Air Batteries. ACS Omega. 2018;3(9):11205-11215.
http://dx.doi.org/10.1021/acsomega.8b01443