Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Self-cleaning coatings are advanced materials for the removal of pollutants and microorganisms by combining wettability, photocatalytic degradation, and antimicrobial activity. In this work, we propose a rational design of self-cleaning films based on TiO 2 synthesized by sol-gel on commercial glazed ceramic tiles for building's indoor applications. The synthesis strategy is based on hydrolysis and condensation of Ti-isopropoxide in the presence of W(VI) precursors to tune defects and crystallinity of the resulting W-TiO 2 thin film. From the microstructure and surface composition analysis for different tungsten contents and annealing temperatures, we conclude that the film is composed by sintered TiO 2 particles with adsorbed polytungstates (WO x ) that inhibit anatase/rutile transformation. Polytungstates on TiO 2 also induce surface defects that enhance water contact angle and inactivation of Escherichia coli under visible light. The presence of W(VI) has a negligible effect toward crystal violet degradation either under visible or under UV light. These results provide evidence on the existence of at least two different types of defects: (i) intrinsic defect from a sol-gel route and (ii) induced defect by tungsten species on the surface. Understanding the correlation between composition, structure, and self-cleaning properties provides a base for an efficient design of low-cost self-cleaning ceramic tiles that can be fully manufactured in an industrial plant. © 2018 American Chemical Society.

Registro:

Documento: Artículo
Título:Wettability, Photoactivity, and Antimicrobial Activity of Glazed Ceramic Tiles Coated with Titania Films Containing Tungsten
Autor:Onna, D.; Fuentes, K.M.; Spedalieri, C.; Perullini, M.; Marchi, M.C.; Alvarez, F.; Candal, R.J.; Bilmes, S.A.
Filiación:Instituto de Química Física de Los Materiales Medio Ambiente y Energía, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
Instituto de Nanosistemas, Universidad Nacional de General San Martín, San-Martín-Provincia-de-Buenos-Aires, CP1650, Argentina
Centro de Microscopías Avanzadas, Instituto de Física de Buenos Aires (IFIBA-CONICET), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
Instituto de Física gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, 13083-970, Brazil
Instituto de Investigación e Ingeniería Ambiental (3iA-CONICET), Universidad Nacional de San Martín, San-Martín-Provincia-de-Buenos-Aires, CP1650, Argentina
Año:2018
Volumen:3
Número:12
Página de inicio:17629
Página de fin:17636
DOI: http://dx.doi.org/10.1021/acsomega.8b03339
Título revista:ACS Omega
Título revista abreviado:ACS Omega
ISSN:24701343
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24701343_v3_n12_p17629_Onna

Referencias:

  • Kirchnerova, J., Herrera Cohen, M.-L., Guy, C., Klvana, D., Photocatalytic Oxidation of N-Butanol under Fluorescent Visible Light Lamp over Commercial TiO 2 (Hombicat UV100 and Degussa P25) (2005) Appl. Catal., A, 282, pp. 321-332
  • Calvo, M.E., Candal, R.J., Bilmes, S.A., Photooxidation of Organic Mixtures on Biased TiO 2 Films (2001) Environ. Sci. Technol., 35, pp. 4132-4138
  • Parkin, I.P., Palgrave, R.G., Self-Cleaning Coatings (2005) J. Mater. Chem., 15, p. 1689
  • Blossey, R., Self-cleaning surfaces - Virtual realities (2003) Nat. Mater., 2, pp. 301-306
  • Fagan, R., McCormack, D.E., Dionysiou, D.D., Pillai, S.C., A Review of Solar and Visible Light Active TiO 2 Photocatalysis for Treating Bacteria, Cyanotoxins and Contaminants of Emerging Concern (2016) Mater. Sci. Semicond. Process., 42, pp. 2-14
  • Cedillo-González, E.I., Riccò, R., Montorsi, M., Montorsi, M., Falcaro, P., Siligardi, C., Self-Cleaning Glass Prepared from a Commercial TiO 2 Nano-Dispersion and Its Photocatalytic Performance under Common Anthropogenic and Atmospheric Factors (2014) Build. Environ., 71, pp. 7-14
  • Faraldos, M., Kropp, R., Anderson, M.A., Sobolev, K., Photocatalytic hydrophobic concrete coatings to combat air pollution (2016) Catal. Today, 259, pp. 228-236
  • Radeka, M., Markov, S., Lončar, E., Rudić, O., Vučetić, S., Ranogajec, J., Photocatalytic Effects of TiO 2 Mesoporous Coating Immobilized on Clay Roofing Tiles (2014) J. Eur. Ceram. Soc., 34, pp. 127-136
  • Murugan, K., Subasri, R., Rao, T.N., Gandhi, A.S., Murty, B.S., Synthesis, Characterization and Demonstration of Self-Cleaning TiO 2 Coatings on Glass and Glazed Ceramic Tiles (2013) Prog. Org. Coating, 76, pp. 1756-1760
  • Bianchi, C.L., Colombo, E., Gatto, S., Stucchi, M., Cerrato, G., Morandi, S., Capucci, V., Photocatalytic Degradation of Dyes in Water with Micro-Sized TiO 2 as Powder or Coated on Porcelain-Grès Tiles (2014) J. Photochem. Photobiol., A, 280, pp. 27-31
  • Fujishima, A., Zhang, X., Tryk, D., TiO 2 Photocatalysis and Related Surface Phenomena (2008) Surf. Sci. Rep., 63, pp. 515-582
  • Nowotny, M.K., Sheppard, L.R., Bak, T., Nowotny, J., Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO 2 -Based Photocatalysts (2008) J. Phys. Chem. C, 112, pp. 5275-5300
  • Pan, X., Yang, M.-Q., Fu, X., Zhang, N., Xu, Y.-J., Defective TiO 2 with Oxygen Vacancies: Synthesis, Properties and Photocatalytic Applications (2013) Nanoscale, 5, p. 3601
  • Madras, G., McCoy, B.J., Navrotsky, A., Kinetic Model for TiO 2 Polymorphic Transformation from Anatase to Rutile (2007) J. Am. Ceram. Soc., 90, pp. 250-255
  • Banerjee, S., Dionysiou, D.D., Pillai, S.C., Self-Cleaning Applications of TiO 2 by Photo-Induced Hydrophilicity and Photocatalysis (2015) Appl. Catal., B, pp. 396-428
  • Hanaor, D.A.H., Sorrell, C.C., Review of the Anatase to Rutile Phase Transformation (2010) J. Mater. Sci., 46, pp. 855-874
  • Di Paola, A., Marcì, G., Palmisano, L., Schiavello, M., Uosaki, K., Ikeda, S., Ohtani, B., Preparation of Polycrystalline TiO 2 Photocatalysts Impregnated with Various Transition Metal Ions: Characterization and Photocatalytic Activity for the Degradation of 4-Nitrophenol (2002) J. Phys. Chem. B, 106, pp. 637-645
  • Xu, H., Ouyang, S., Liu, L., Reunchan, P., Umezawa, N., Ye, J., Recent Advances in TiO 2 -Based Photocatalysis (2014) J. Mater. Chem. A, 2, p. 12642
  • Kenevey, K., Morris, M.A., Cunningham, J., Ferrand, G., Stabilization of Anatase by Tungsten Introduced to the Titania Lattice by Sol-Gel and Impregnation Techniques (1996) Key Eng. Mater., pp. 303-312
  • Da Silva, A.L., Dondi, M., Raimondo, M., Hotza, D., Photocatalytic Ceramic Tiles: Challenges and Technological Solutions (2018) J. Eur. Ceram. Soc., 38, pp. 1002-1017
  • Rampaul, A., Parkin, I.P., O'Neill, S.A., Desouza, J., Mills, A., Elliott, N., Titania and Tungsten Doped Titania Thin Films on Glass; Active Photocatalysts (2003) Polyhedron, 22, pp. 35-44
  • Lin, C.-L., Chen, Y.-W., Chen, E., Preparation and characterization of electrochromic tungsten oxide-titania composite thin films with different tungsten/titanium ratios (2014) Thin Solid Films, 556, pp. 48-53
  • Patrocinio, A.O.T., Paula, L.F., Paniago, R.M., Freitag, J., Bahnemann, D.W., Layer-by-Layer TiO 2 / WO 3 Thin Films As Efficient Photocatalytic Self-Cleaning Surfaces (2014) ACS Appl. Mater. Interfaces, 6, pp. 16859-16866
  • Vaiano, V., Sarno, G., Sannino, D., Ciambelli, P., Photocatalytic and Antistain Properties of Ceramic Tiles Functionalized with Tungsten-Doped TiO 2 (2014) Chem. Eng. Trans., 39, pp. 499-504
  • Chen, H.-K., Chen, W.-F., Koshy, P., Adabifiroozjaei, E., Liu, R., Sheppard, L.R., Sorrell, C.C., Effect of Tungsten-Doping on the Properties and Photocatalytic Performance of Titania Thin Films on Glass Substrates (2016) J. Taiwan Inst. Chem. Eng., 67, pp. 202-210
  • Tadić, N., Stojadinović, S., Radić, N., Grbić, B., Vasilić, R., Characterization and Photocatalytic Properties of Tungsten Doped TiO 2 Coatings on Aluminum Obtained by Plasma Electrolytic Oxidation (2016) Surf. Coat. Technol., 305, pp. 192-199
  • Li, X.Z., Li, F.B., Yang, C.L., Ge, W.K., Photocatalytic Activity of WOx-TiO 2 under Visible Light Irradiation (2001) J. Photochem. Photobiol., A, 141, pp. 209-217
  • Khan, H., Rigamonti, M.G., Patience, G.S., Boffito, D.C., Spray Dried TiO 2 /WO 3 Heterostructure for Photocatalytic Applications with Residual Activity in the Dark (2018) Appl. Catal., B, 226, pp. 311-323
  • Lebarbier, V., Clet, G., Houalla, M., Relations between Structure, Acidity, and Activity of WOx/ TiO 2 : Influence of the Initial State of the Support, Titanium Oxyhydroxide, or Titanium Oxide (2006) J. Phys. Chem. B, 110, pp. 22608-22617
  • Meng, Z.-D., Zhu, L., Ullah, K., Ye, S., Oh, W.-C., Detection of Oxygen Species Generated by WO 3 Modification Fullerene/TiO 2 in the Degradation of 1,5-Diphenyl Carbazide (2014) Mater. Res. Bull., 56, pp. 45-53
  • Cho, M., Chung, H., Choi, W., Yoon, J., Linear Correlation between Inactivation of E. Coli and OH Radical Concentration in TiO 2 Photocatalytic Disinfection (2004) Water Res., 38, pp. 1069-1077
  • Huang, Z., Maness, P.-C., Blake, D.M., Wolfrum, E.J., Smolinski, S.L., Jacoby, W.A., Bactericidal Mode of Titanium Dioxide Photocatalysis (2000) J. Photochem. Photobiol., A, 130, pp. 163-170
  • Alcober, C., Alvarez, F., Bilmes, S.A., Candal, R.J., Photochromic W-TiO 2 Membranes (2002) J. Mater. Sci. Lett., 21, pp. 501-504
  • Couselo, N., García Einschlag, F.S., Candal, R.J., Jobbágy, M., Tungsten-Doped TiO 2 vs Pure TiO 2 Photocatalysts: Effects on Photobleaching Kinetics and Mechanism (2008) J. Phys. Chem. C, 112, pp. 1094-1100
  • Nolan, N.T., Seery, M.K., Pillai, S.C., Spectroscopic Investigation of the Anatase-to-Rutile Transformation of Sol-Gel-Synthesized TiO 2 Photocatalysts (2009) J. Phys. Chem. C, 113, pp. 16151-16157
  • Couselo, N., García Einschlag, F.S., Candal, R.J., Jobbágy, M., Tungsten-Doped TiO 2 vs Pure TiO 2 Photocatalysts: Effects on Photobleaching Kinetics and Mechanism (2008) J. Phys. Chem. C, 112, pp. 1094-1100
  • Pan, J.-M., Maschhoff, B.L., Diebold, U., Madey, T.E., Interaction of Water, Oxygen, and Hydrogen with TiO 2 (110) Surfaces Having Different Defect Densities (1992) J. Vac. Sci. Technol., A, 10, pp. 2470-2476
  • Bilmes, S.A., Mandelbaum, P., Alvarez, F., Victoria, N.M., Surface and Electronic Structure of Titanium Dioxide Photocatalysts (2000) J. Phys. Chem. B, 104, pp. 9851-9858
  • Sathasivam, S., Bhachu, D.S., Lu, Y., Chadwick, N., Althabaiti, S.A., Alyoubi, A.O., Basahel, S.N., Parkin, I.P., Tungsten Doped TiO 2 with Enhanced Photocatalytic and Optoelectrical Properties via Aerosol Assisted Chemical Vapor Deposition (2015) Sci. Rep., 5, p. 10952
  • Bischoff, B.L., Anderson, M.A., Peptization Process in the Sol-Gel Preparation of Porous Anatase (TiO 2 ) (1995) Chem. Mater., 7, pp. 1772-1778
  • Cruywagen, J.J., Protonation, Oligomerization, and Condensation Reactions of Vanadate(V), Molybdate(vi), and Tungstate(vi) (1999) Adv. Inorg. Chem., 49, pp. 127-182
  • Kubacka, A., Iglesias-Juez, A., Di Michiel, M., Becerro, A.I., Fernández-García, M., Morphological and Structural Behavior of TiO 2 Nanoparticles in the Presence of WO 3 : Crystallization of the Oxide Composite System (2014) Phys. Chem. Chem. Phys., 16, pp. 19540-19549
  • Onfroy, T., Lebarbier, V., Clet, G., Houalla, M., Quantitative Relationship between the Nature of Surface Species and the Catalytic Activity of Tungsten Oxides Supported on Crystallized Titania (2010) J. Mol. Catal. A: Chem., 318, pp. 1-7
  • Shibata, T., Irie, H., Ohmori, M., Nakajima, A., Watanabe, T., Hashimoto, K., Comparison of Photochemical Properties of Brookite and Anatase TiO 2 Films (2004) Phys. Chem. Chem. Phys., 6, p. 1359
  • Quéré, D., Wetting and Roughness (2008) Annu. Rev. Mater. Res., 38, pp. 71-99
  • Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., Watanabe, T., Light-Induced Amphiphilic Surfaces (1997) Nature, 388, pp. 431-432
  • Akurati, K.K., Vital, A., Dellemann, J.-P., Michalow, K., Graule, T., Ferri, D., Baiker, A., Flame-Made WO 3 /TiO 2 Nanoparticles: Relation between Surface Acidity, Structure and Photocatalytic Activity (2008) Appl. Catal., B, 79, pp. 53-62
  • McKenzie, K., Maclean, M., Grant, M.H., Ramakrishnan, P., Macgregor, S.J., Anderson, J.G., The effects of 405 nm light on bacterial membrane integrity determined by salt and bile tolerance assays, leakage of UV-absorbing material and SYTOX green labelling (2016) Microbiology, 162, pp. 1680-1688
  • Kubacka, A., Diez, M.S., Rojo, D., Bargiela, R., Ciordia, S., Zapico, I., Albar, J.P., Fernández-García, M., Understanding the Antimicrobial Mechanism of TiO 2 -Based Nanocomposite Films in a Pathogenic Bacterium (2014) Sci. Rep., 4, p. 4134
  • Wolfrum, E.J., Huang, J., Blake, D.M., Maness, P.-C., Huang, Z., Fiest, J., Jacoby, W.A., Photocatalytic Oxidation of Bacteria, Bacterial and Fungal Spores, and Model Biofilm Components to Carbon Dioxide on Titanium Dioxide-Coated Surfaces (2002) Environ. Sci. Technol., 36, pp. 3412-3419
  • Mitoraj, D., Jańczyk, A., Strus, M., Kisch, H., Stochel, G., Heczko, P.B., Macyk, W., Visible Light Inactivation of Bacteria and Fungi by Modified Titanium Dioxide (2007) Photochem. Photobiol. Sci., 6, pp. 642-648
  • Gottenbos, B., Antimicrobial Effects of Positively Charged Surfaces on Adhering Gram-Positive and Gram-Negative Bacteria (2001) J. Antimicrob. Chemother., 48, pp. 7-13
  • Chen, C., Mai, F., Chen, K., Wu, C., Lu, C., Photocatalyzed N-de-Methylation and Degradation of Crystal Violet in Titania Dispersions under UV Irradiation (2007) Dyes Pigm., 75, pp. 434-442
  • Lai, W.H., Su, Y.H., Teoh, L.G., Hon, M.H., Commercial and Natural Dyes as Photosensitizers for a Water-Based Dye-Sensitized Solar Cell Loaded with Gold Nanoparticles (2008) J. Photochem. Photobiol., A, 195, pp. 307-313
  • Ross-Medgaarden, E.I., Wachs, I.E., Structural Determination of Bulk and Surface Tungsten Oxides with UV-vis Diffuse Reflectance Spectroscopy and Raman Spectroscopy (2007) J. Phys. Chem. C, 111, pp. 15089-15099
  • Regazzoni, A.E., Mandelbaum, P., Matsuyoshi, M., Schiller, S., Bilmes, S.A., Blesa, M.A., Adsorption and Photooxidation of Salicylic Acid on Titanium Dioxide: A Surface Complexation Description (1998) Langmuir, 14, pp. 868-874
  • Diebold, U., The Surface Science of Titanium Dioxide (2003) Surf. Sci. Rep., 48, pp. 53-229
  • Briggs, D., Seah, M.P., (1996) Practical Surface Analysis, Auger and X-Ray Photoelectron Spectroscopy, , Practical Surface Analysis; Wiley

Citas:

---------- APA ----------
Onna, D., Fuentes, K.M., Spedalieri, C., Perullini, M., Marchi, M.C., Alvarez, F., Candal, R.J.,..., Bilmes, S.A. (2018) . Wettability, Photoactivity, and Antimicrobial Activity of Glazed Ceramic Tiles Coated with Titania Films Containing Tungsten. ACS Omega, 3(12), 17629-17636.
http://dx.doi.org/10.1021/acsomega.8b03339
---------- CHICAGO ----------
Onna, D., Fuentes, K.M., Spedalieri, C., Perullini, M., Marchi, M.C., Alvarez, F., et al. "Wettability, Photoactivity, and Antimicrobial Activity of Glazed Ceramic Tiles Coated with Titania Films Containing Tungsten" . ACS Omega 3, no. 12 (2018) : 17629-17636.
http://dx.doi.org/10.1021/acsomega.8b03339
---------- MLA ----------
Onna, D., Fuentes, K.M., Spedalieri, C., Perullini, M., Marchi, M.C., Alvarez, F., et al. "Wettability, Photoactivity, and Antimicrobial Activity of Glazed Ceramic Tiles Coated with Titania Films Containing Tungsten" . ACS Omega, vol. 3, no. 12, 2018, pp. 17629-17636.
http://dx.doi.org/10.1021/acsomega.8b03339
---------- VANCOUVER ----------
Onna, D., Fuentes, K.M., Spedalieri, C., Perullini, M., Marchi, M.C., Alvarez, F., et al. Wettability, Photoactivity, and Antimicrobial Activity of Glazed Ceramic Tiles Coated with Titania Films Containing Tungsten. ACS Omega. 2018;3(12):17629-17636.
http://dx.doi.org/10.1021/acsomega.8b03339