Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays. © 2018 American Physical Society.

Registro:

Documento: Artículo
Título:Chemical event chain model of coupled genetic oscillators
Autor:Jörg, D.J.; Morelli, L.G.; Jülicher, F.
Filiación:Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden, 01187, Germany
Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, Buenos Aires, C1425FQD, Argentina
Departamento de Física, FCEyN UBA, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Max Planck Institute for Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Str. 11, Dortmund, 44227, Germany
Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
Wellcome Trust, Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, United Kingdom
Palabras clave:Chains; Gene expression; Gene expression regulation; Stochastic systems; Cross correlations; Distributed delays; Genetic oscillators; Isolated regions; Parameter spaces; Phase oscillators; Stochastic oscillations; Stochastic transitions; Stochastic models; biological model; cells; cytology; gene expression regulation; Markov chain; metabolism; signal transduction; Cells; Gene Expression Regulation; Models, Biological; Signal Transduction; Stochastic Processes
Año:2018
Volumen:97
Número:3
DOI: http://dx.doi.org/10.1103/PhysRevE.97.032409
Título revista:Physical Review E
Título revista abreviado:Phys. Rev. E
ISSN:24700045
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24700045_v97_n3_p_Jorg

Referencias:

  • Alon, U., (2006) An Introduction to Systems Biology: Design Principles of Biological Circuits, , (Chapman & Hall/CRC Press, Boca Raton, FloL)
  • Goldbeter, A., (1997) Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, , (Cambridge University Press, Cambridge)
  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., (2002) Molecular Biology of the Cell, , 4th ed. (Garland Science, New York)
  • Ilagan, M.X.G., Kopan, R., SnapShot: Notch signaling pathway (2007) Cell, 128, p. 1246
  • Novák, B., Tyson, J.J., Design principles of biochemical oscillators (2008) Nat. Rev. Mol. Cell Biol., 9, p. 981
  • Morelli, L.G., Jülicher, F., Precision of Genetic Oscillators and Clocks (2007) Phys. Rev. Lett., 98, p. 228101
  • Hardin, P.E., Hall, J.C., Rosbash, M., Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels (1990) Nature, 343, p. 536
  • Dunlap, J.C., Molecular bases for circadian clocks (1999) Cell, 96, p. 271
  • Smolen, P., Baxter, D.A., Byrne, J.H., A reduced model clarifies the role of feedback loops and time delays in the Drosophila circadian oscillator (2002) Biophys. J., 83, p. 2349
  • Schibler, U., Naef, F., Cellular oscillators: Rhythmic gene expression and metabolism (2005) Curr. Opin. Cell Biol., 17, p. 223
  • Hastings, M., O'Neill, J.S., Maywood, E.S., Circadian clocks: Regulators of endocrine and metabolic rhythms (2007) J. Endocrinol., 195, p. 187
  • Zwicker, D., Lubensky, D.K., Ten Wolde, P.R., Robust circadian clocks from coupled protein-modification and transcription-translation cycles (2010) Proc. Natl. Acad. Sci. USA, 107, p. 22540
  • Zhang, E.E., Kay, S.A., Clocks not winding down: Unravelling circadian networks (2010) Nat. Rev. Mol. Cell Biol., 11, p. 764
  • Abraham, U., Granada, A.E., Westermark, P.O., Heine, M., Kramer, A., Herzel, H., Coupling governs entrainment range of circadian clocks (2010) Mol. Syst. Biol., 6, p. 438
  • Granada, A.E., Bordyugov, G., Kramer, A., Herzel, H., Human chronotypes from a theoretical perspective (2013) PLOS ONE, 8, p. e59464
  • Imayoshi, I., Kageyama, R., BHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells (2014) Neuron, 82, p. 9
  • Shimojo, H., Kageyama, R., Oscillatory control of Delta-like1 in somitogenesis and neurogenesis: A unified model for different oscillatory dynamics (2016) Semin. Cell Dev. Biol., 49, p. 76
  • Jörg, D.J., Morelli, L.G., Soroldoni, D., Oates, A.C., Jülicher, F., Continuum theory of gene expression waves during vertebrate segmentation (2015) New J. Phys., 17, p. 093042
  • Oates, A.C., Morelli, L.G., Ares, S., Patterning embryos with oscillations: Structure, function and dynamics of the vertebrate segmentation clock (2012) Development, 139, p. 625
  • Niederholtmeyer, H., Sun, Z.Z., Hori, Y., Yeung, E., Verpoorte, A., Murray, R.M., Maerkl, S.J., Rapid cell-free forward engineering of novel genetic ring oscillators (2015) ELife, 4, p. e09771
  • Tokuda, I.T., Ono, D., Ananthasubramaniam, B., Honma, S., Honma, K.-I., Herzel, H., Coupling controls the synchrony of clock cells in development and knockouts (2015) Biophys. J., 109, p. 2159
  • Jörg, D.J., Amplitude bounds for biochemical oscillators (2017) Europhys. Lett., 119, p. 58004
  • Elowitz, M.B., Leibler, S., A synthetic oscillatory network of transcriptional regulators (2000) Nature, 403, p. 335
  • Garcia-Ojalvo, J., Elowitz, M.B., Strogatz, S.H., Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing (2004) Proc. Natl. Acad. Sci. USA, 101, p. 10955
  • Stricker, J., Cookson, S., Bennett, M.R., Mather, W.H., Tsimring, L.S., Hasty, J., A fast, robust and tunable synthetic gene oscillator (2008) Nature, 456, p. 516
  • Danino, T., Mondragón-Palomino, O., Tsimring, L., Hasty, J., A synchronized quorum of genetic clocks (2010) Nature, 463, p. 326
  • Kim, J., Winfree, E., Synthetic in vitro transcriptional oscillators (2011) Mol. Sys. Biol., 7, p. 465
  • Potvin-Trottier, L., Lord, N.D., Vinnicombe, G., Paulsson, J., Synchronous long-term oscillations in a synthetic gene circuit (2016) Nature, 538, p. 514
  • Tayar, A.M., Karzbrun, E., Noireaux, V., Bar-Ziv, R.H., Synchrony and pattern formation of coupled genetic oscillators on a chip of artificial cells (2017) Proc. Natl. Acad. Sci. U.S.A., 114, p. 11609
  • Barkai, N., Leibler, S., Circadian clocks limited by noise (2000) Nature, 403, p. 267
  • Vilar, J.M.G., Kueh, H.Y., Barkai, N., Leibler, S., Mechanisms of noise-resistance in genetic oscillators (2002) Proc. Natl. Acad. Sci. U.S.A., 99, p. 5988
  • Gonze, D., Halloy, J., Gaspard, P., Biochemical clocks and molecular noise: Theoretical study of robustness factors (2002) J. Chem. Phys., 116, p. 10997
  • Mihalcescu, I., Hsing, W., Leibler, S., Resilient circadian oscillator revealed in individual cyanobacteria (2004) Nature, 430, p. 81
  • Potoyan, D.A., Wolynes, P.G., On the dephasing of genetic oscillators (2014) Proc. Natl. Acad. Sci. U.S.A., 111, p. 2391
  • Webb, A.B., Lengyel, I.M., Jörg, D.J., Valentin, G., Jülicher, F., Morelli, L.G., Oates, A.C., Persistence, period and precision of autonomous cellular oscillators from the zebrafish segmentation clock (2016) ELife, 5, p. e08438
  • Lengyel, I.M., Morelli, L.G., Multiple binding sites for transcriptional repressors can produce regular bursting and enhance noise suppression (2017) Phys. Rev. e, 95, p. 042412
  • Lewis, J., Autoinhibition with transcriptional delay: A simple mechanism for the zebrafish somitogenesis oscillator (2003) Curr. Biol., 13, p. 1398
  • Liu, A.C., Welsh, D.K., Ko, C.H., Tran, H.G., Zhang, E.E., Priest, A.A., Buhr, E.D., Kay, S.A., Intercellular coupling confers robustness against mutations in the SCN circadian clock network (2007) Cell, 129, p. 605
  • Needleman, D.J., Tiesinga, P.H.E., Sejnowski, T.J., Collective enhancement of precision in networks of coupled oscillators (2001) Physica D, 155, p. 324
  • Morelli, L.G., Ares, S., Herrgen, L., Schröter, C., Jülicher, F., Oates, A.C., Delayed coupling theory of vertebrate segmentation (2009) HFSP J., 3, p. 55
  • Herrgen, L., Ares, S., Morelli, L.G., Schröter, C., Jülicher, F., Oates, A.C., Intercellular coupling regulates the period of the segmentation clock (2010) Curr. Biol., 20, p. 1244
  • Ares, S., Morelli, L.G., Jörg, D.J., Oates, A.C., Jülicher, F., Collective Modes of Coupled Phase Oscillators with Delayed Coupling (2012) Phys. Rev. Lett., 108, p. 204101
  • Cross, M.C., Improving the frequency precision of oscillators by synchronization (2012) Phys. Rev. e, 85, p. 046214
  • Shimojo, H., Isomura, A., Ohtsuka, T., Kori, H., Miyachi, H., Kageyama, R., Oscillatory control of Delta-like1 in cell interactions regulates dynamic gene expression and tissue morphogenesis (2016) Genes Dev., 30, p. 102
  • Liao, B.-K., Jörg, D.J., Oates, A.C., Faster embryonic segmentation through elevated Delta-Notch signaling (2016) Nat. Commun., 7, p. 11861
  • Jörg, D.J., Stochastic Kuramoto oscillators with discrete phase states (2017) Phys. Rev. e, 96, p. 032201
  • Isomura, A., Ogushi, F., Kori, H., Kageyama, R., Optogenetic perturbation and bioluminescence imaging to analyze cell-to-cell transfer of oscillatory information (2017) Genes Dev., 31, p. 524
  • Ananthasubramaniam, B., Herzog, E.D., Herzel, H., Timing of neuropeptide coupling determines synchrony and entrainment in the mammalian circadian clock (2014) PLoS Comp. Biol., 10, p. e1003565
  • Lewis, J., Hanisch, A., Holder, M., Notch signaling, the segmentation clock, and the patterning of vertebrate somites (2009) J. Biol., 8, p. 44
  • Gardiner, C., (2009) Stochastic Methods: A Handbook for the Natural and Social Sciences, , Springer Series in Synergetics (Springer, Berlin)
  • Van Kampen, N.G., (2007) Stochastic Processes in Physics and Chemistry, , 3rd ed. (Elsevier, Amsterdam)
  • Stratonovich, R.L., (1963) Topics in the Theory of Random Noise, , Mathematics and Its Applications, No. 1 (Gordon & Breach, London)
  • Schuster, H.G., Wagner, P., Mutual entrainment of two limit cycle oscillators with time delayed coupling (1989) Prog. Theor. Phys., 81, p. 939
  • Stephen Yeung, M.K., Strogatz, S.H., Time Delay in the Kuramoto Model of Coupled Oscillators (1999) Phys. Rev. Lett., 82, p. 648
  • Kuramoto, Y., Cooperative dynamics of oscillator community: A study based on lattice of rings (1984) Prog. Theor. Phys., 79, p. 223
  • Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., The Kuramoto model: A simple paradigm for synchronization phenomena (2005) Rev. Mod. Phys., 77, p. 137
  • Rodrigues, F.A., Peron, T.K.D.M., Ji, P., Kurths, J., The Kuramoto model in complex networks (2016) Phys. Rep., 610, p. 1
  • Earl, M.G., Strogatz, S.H., Synchronization in oscillator networks with delayed coupling: A stability criterion (2003) Phys. Rev. e, 67, p. 036204
  • Ao, X., Hänggi, P., Schmid, G., In-phase and anti-phase synchronization in noisy Hodgkin-Huxley neurons (2013) Math. Biosci., 245, p. 49
  • D'Huys, O., Jüngling, Th., Kinzel, W., Stochastic switching in delay-coupled oscillators (2014) Phys. Rev. e, 90, p. 032918
  • Matsuda, M., Koga, M., Woltjen, K., Nishida, E., Ebisuya, M., Synthetic lateral inhibition governs cell-type bifurcation with robust ratios (2015) Nat. Commun., 6, p. 6195
  • Schröter, C., Ares, S., Morelli, L.G., Isakova, A., Hens, K., Soroldoni, D., Gajewski, M., Oates, A.C., Topology and dynamics of the zebrafish segmentation clock core circuit (2012) PLoS Biol., 10, p. e1001364
  • Bernard, S., Gonze, D., Čajavec, B., Herzel, H., Kramer, A., Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic Nucleus (2007) PLoS Comp. Biol., 3, p. e68
  • Azzi, A., Evans, J.A., Leise, T., Myung, J., Takumi, T., Davidson, A.J., Brown, S.A., Network dynamics mediate circadian clock plasticity (2017) Neuron, 93, p. 441
  • Erzberger, A., Hampp, G., Granada, A.E., Albrecht, U., Herzel, H., Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range (2013) J. R. Soc. Interface, 10, p. 20130221
  • Gillespie, D., Exact stochastic simulation of coupled chemical-reactions (1977) J. Phys. Chem., 81, p. 2340
  • Torrence, C., Compo, G.P., A practical guide to wavelet analysis (1998) B. Am. Meteorol. Soc., 79, p. 61
  • Strogatz, S.H., (1994) Nonlinear Dynamics and Chaos, , (Addison-Wesley, Reading, MA)
  • Amann, A., Schöll, E., Just, W., Some basic remarks on eigenmode expansions of time-delay dynamics (2007) Physica A, 373, p. 191

Citas:

---------- APA ----------
Jörg, D.J., Morelli, L.G. & Jülicher, F. (2018) . Chemical event chain model of coupled genetic oscillators. Physical Review E, 97(3).
http://dx.doi.org/10.1103/PhysRevE.97.032409
---------- CHICAGO ----------
Jörg, D.J., Morelli, L.G., Jülicher, F. "Chemical event chain model of coupled genetic oscillators" . Physical Review E 97, no. 3 (2018).
http://dx.doi.org/10.1103/PhysRevE.97.032409
---------- MLA ----------
Jörg, D.J., Morelli, L.G., Jülicher, F. "Chemical event chain model of coupled genetic oscillators" . Physical Review E, vol. 97, no. 3, 2018.
http://dx.doi.org/10.1103/PhysRevE.97.032409
---------- VANCOUVER ----------
Jörg, D.J., Morelli, L.G., Jülicher, F. Chemical event chain model of coupled genetic oscillators. Phys. Rev. E. 2018;97(3).
http://dx.doi.org/10.1103/PhysRevE.97.032409