Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present an alternative numerical approach to compute the number of particles created inside a cavity due to time-dependent boundary conditions. The physical model consists of a rectangular cavity, where a wall always remains still while the other wall of the cavity presents a smooth movement in one direction. The method relies on the setting of the boundary conditions (Dirichlet and Neumann) and the following resolution of the corresponding equations of modes. By a further comparison between the ground state before and after the movement of the cavity wall, we finally compute the number of particles created. To demonstrate the method, we investigate the creation of particle production in vibrating cavities, confirming previously known results in the appropriate limits. Within this approach, the dynamical Casimir effect can be investigated, making it possible to study a variety of scenarios where no analytical results are known. Of special interest is, of course, the realistic case of the electromagnetic field in a three-dimensional cavity, with transverse electric (TE)-mode and transverse magnetic (TM)-mode photon production. Furthermore, with our approach we are able to calculate numerically the particle creation in a tuneable resonant superconducting cavity by the use of the generalized Robin boundary condition. We compare the numerical results with analytical predictions as well as a different numerical approach. Its extension to three dimensions is also straightforward. © 2017 American Physical Society.

Registro:

Documento: Artículo
Título:Adaptive numerical algorithms to simulate the dynamical Casimir effect in a closed cavity with different boundary conditions
Autor:Villar, P.I.; Soba, A.
Filiación:Departamento de Física Juan José Giambiagi, FCEyN UBA, IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina
CNEA-CONICET, Centro Atómico Constituyentes, Avenida General Paz 1499, San-Martín, Argentina
Palabras clave:Cavity resonators; Dynamic mechanical analysis; Electromagnetic fields; Quantum theory; Different boundary condition; Dynamical Casimir effect; Robin boundary conditions; Superconducting cavities; Three dimensional cavity; Time-dependent boundary conditions; Transverse electric modes; Transverse magnetic modes; Boundary conditions
Año:2017
Volumen:96
Número:1
DOI: http://dx.doi.org/10.1103/PhysRevE.96.013307
Título revista:Physical Review E
Título revista abreviado:Phys. Rev. E
ISSN:24700045
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24700045_v96_n1_p_Villar

Referencias:

  • Schwinger, J., (1993) Proc. Natl. Acad. Sci. USA, 90, p. 958
  • Schwinger, J., (1993) Proc. Natl. Acad. Sci. USA, 90, p. 2105
  • Schwinger, J., (1993) Proc. Natl. Acad. Sci. USA, 90, p. 4505
  • Schwinger, J., (1993) Proc. Natl. Acad. Sci. USA, 90, p. 7285
  • Dodonov, V.V., (2010) Phys. Scr., 82, p. 038105
  • Dalvit, D.A.R., Maia Neto, P.A., Mazzitelli, F.D., (2011) Lect. Notes Phys., 834, p. 419
  • Nation, P.D., Johansson, J.R., Blencowe, M.P., Nori, F., (2012) Rev. Mod. Phys., 84, p. 1
  • Dodonov, V.V., (2001) Adv. Chem. Phys., 119, p. 309
  • Lambrecht, A., Jaekel, M.-T., Reynaud, S., (1996) Phys. Rev. Lett., 77, p. 615
  • Moore, G.T., (1970) J. Mater. Phys., 11, p. 2679
  • Fulling, S.A., Davies, P.C.W., (1976) Proc. R. Soc. London, Ser. A, 348, p. 393
  • Dewitt, B., (1975) Phys. Rep., 19, p. 295
  • Wilson, C.M., Johansson, G., Pourkabirian, A., Johansson, J.R., Duty, T., Nori, F., Delsing, P., (2011) Nature (London), 479, p. 376
  • Lahteenmaki, P., Paraoanu, G.S., Hassel, J., Hakonen, P.J., (2013) Proc. Natl. Acad. Sci. USA, 110, p. 4234
  • Felicetti, S., Sabín, C., Fuentes, I., Lamata, L., Romero, G., Solano, E., (2015) Phys. Rev. B, 92, p. 064501
  • Benenti, G., D'Arrigo, A., Siccardi, S., Strini, G., (2014) Phys. Rev. A, 90, p. 052313
  • Johansson, J.R., Johansson, G., Wilson, C.M., Delsing, P., Nori, F., (2013) Phys. Rev. A, 87, p. 043804
  • Felicetti, S., Sanz, M., Lamata, L., Romero, G., Johansson, G., Delsing, P., Solano, E., (2014) Phys. Rev. Lett., 113, p. 093602
  • Stassi, R., De Liberato, S., Garziano, L., Spagnolo, B., Savasta, S., (2015) Phys. Rev. A, 92, p. 013830
  • Agnesi, A., Braggio, C., Bressi, G., Carugno, G., Galeazzi, G., Pirzio, F., Reali, G., Zanello, D., (2008) J. Phys. A: Math. Theor., 41, p. 164024
  • Crocce, M., Dalvit, D.A.R., Lombardo, F.C., Mazzitelli, F.D., (2004) Phys. Rev. A, 70, p. 033811. , For a model with time-dependent conductivity, see
  • Kim, W.-J., Brownell, J.H., Onofrio, R., (2006) Phys. Rev. Lett., 96, p. 200402
  • Doukas, J., Louko, J., (2015) Phys. Rev. D, 91, p. 044010
  • Mintz, B., Farina, C., Maia Neto, P.A., Rodrigues, R.B., (2006) J. Phys. A, 39, p. 11325
  • Johansson, J.R., Johansson, G., Wilson, C.M., Nori, F., (2010) Phys. Rev. A, 82, p. 052509
  • Rego, A.L.C., Silva, H.O., Alves, D.T., Farina, C., (2014) Phys. Rev. D, 90, p. 025003
  • Wustmann, W., Shumeiko, V., (2013) Phys. Rev. B, 87, p. 184501
  • Dodonov, V.V., Klimov, A.B., Nikonov, D.E., (1993) J. Math. Phys., 34, p. 2742
  • Dodonov, V.V., Klimov, A.B., (1996) Phys. Rev. A, 53, p. 2664
  • Dodonov, V.V., (1998) Phys. Lett. A, 244, p. 517
  • Dodonov, A.V., Dodonov, V.V., (2001) Phys. Lett. A, 289, p. 291
  • Ji, J.-Y., Jung, H.-H., Park, J.-W., Soh, K.-S., (1997) Phys. Rev. A, 56, p. 4440
  • Klimov, A.B., Altuzar, V., (1997) Phys. Lett. A, 226, p. 41
  • Crocce, M., Dalvit, D.A.R., Mazzitelli, F.D., (2001) Phys. Rev. A, 64, p. 013808
  • Mundarain, D.F., Neto, P.A.M., (1998) Phys. Rev. A, 57, p. 1379
  • Crocce, M., Dalvit, D.A.R., Mazzitelli, F.D., (2002) Phys. Rev. A, 66, p. 033811
  • Dodonov, V.V., (1995) Phys. Lett. A, 207, p. 126
  • Dodonov, A.V., Dodonov, E.V., Dodonov, V.V., (2003) Phys. Lett. A, 317, p. 378
  • Ruser, M., (2006) J. Phys. A, 39, p. 6711
  • Ruser, M., (2006) Phys. Rev. A, 73, p. 043811
  • Alves, D.T., Granhen, E.R., (2014) Comput. Phys. Commun., 185, p. 2101
  • Alves, D.T., Granhen, E.R., Silva, H.O., Lima, M.G., (2010) Phys. Rev. D, 81, p. 025016
  • Alves, D.T., Granhen, E.R., Pires, W.P., (2010) Phys. Rev. D, 82, p. 045028
  • Alves, D.T., Granhen, E.R., Silva, H.O., Lima, M.G., (2010) Phys. Lett. A, 374, p. 3899
  • Cole, C.K., Schieve, W.C., (1995) Phys. Rev A, 52, p. 4405
  • Cole, C.K., Schieve, W.C., (2001) Phys. Rev A, 64, p. 023813
  • Lombardo, F.C., Mazzitelli, F.D., Soba, A., Villar, P.I., (2016) Phys. Rev. A, 93, p. 032501
  • Silva, H.O., Farina, C., (2011) Phys. Rev D, 84, p. 045003
  • Farina, C., Silva, H.O., Rego, A.L.C., Alves, D.T., (2012) Int. J. Mod. Phys. Conf. Ser., 14, p. 306
  • Rego, A.L.C., Mintz, B.W., Farina, C., Alves, D.T., (2013) Phys. Rev D, 87, p. 045024
  • Rego, A.L.C., Da Alves S, J.P., Alves, D.T., Farina, C., (2013) Phys. Rev A, 88, p. 032515
  • Silva, J.D.L., Braga, A.N., Rego, A.L.C., Alves, D.T., (2015) Phys. Rev. D, 92, p. 025040
  • Shampine, L.F., (2005) J. Sci. Comput., 25, p. 3
  • Fosco, C.D., Lombardo, F.C., Mazzitelli, F.D., (2013) Phys. Rev. D, 87, p. 105008
  • Villar, P.I., Soba, A., Lombardo, F.C., (2017) Phys. Rev. A, 95, p. 032115
  • Dodonov, V.V., Klimov, A.B., Manko, V.I., (1990) Phys. Lett. A, 149, p. 225

Citas:

---------- APA ----------
Villar, P.I. & Soba, A. (2017) . Adaptive numerical algorithms to simulate the dynamical Casimir effect in a closed cavity with different boundary conditions. Physical Review E, 96(1).
http://dx.doi.org/10.1103/PhysRevE.96.013307
---------- CHICAGO ----------
Villar, P.I., Soba, A. "Adaptive numerical algorithms to simulate the dynamical Casimir effect in a closed cavity with different boundary conditions" . Physical Review E 96, no. 1 (2017).
http://dx.doi.org/10.1103/PhysRevE.96.013307
---------- MLA ----------
Villar, P.I., Soba, A. "Adaptive numerical algorithms to simulate the dynamical Casimir effect in a closed cavity with different boundary conditions" . Physical Review E, vol. 96, no. 1, 2017.
http://dx.doi.org/10.1103/PhysRevE.96.013307
---------- VANCOUVER ----------
Villar, P.I., Soba, A. Adaptive numerical algorithms to simulate the dynamical Casimir effect in a closed cavity with different boundary conditions. Phys. Rev. E. 2017;96(1).
http://dx.doi.org/10.1103/PhysRevE.96.013307