Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In the present paper, the avoidance behavior of pedestrians was characterized by controlled experiments. Several conflict situations were studied considering different flow rates and group sizes in crossing and head-on configurations. Pedestrians were recorded from above, and individual two-dimensional trajectories of their displacement were recovered after image processing. Lateral swaying amplitude and step lengths were measured for free pedestrians, obtaining similar values to the ones reported in the literature. Minimum avoidance distances were computed in two-pedestrian experiments. In the case of one pedestrian dodging an arrested one, the avoidance distance did not depend on the relative orientation of the still pedestrian with respect to the direction of motion of the first. When both pedestrians were moving, the avoidance distance in a perpendicular encounter was longer than the one obtained during a head-on approach. It was found that the mean curvature of the trajectories was linearly anticorrelated with the mean speed. Furthermore, two common avoidance maneuvers, stopping and steering, were defined from the analysis of the acceleration and curvature in single trajectories. Interestingly, it was more probable to observe steering events than stopping ones, also the probability of simultaneous steering and stopping occurrences was negligible. The results obtained in this paper can be used to validate and calibrate pedestrian dynamics models. © 2016 American Physical Society.

Registro:

Documento: Artículo
Título:Experimental characterization of collision avoidance in pedestrian dynamics
Autor:Parisi, D.R.; Negri, P.A.; Bruno, L.
Filiación:Instituto Tecnológico de Buenos Aires, Lavarden 389, C. A. de Buenos Aires, 1437, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Universidad Argentina de la Empresa, Lima 754, C. A. de Buenos Aires, 1073, Argentina
Departamento de Física-IFIBA, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C. A. de Buenos Aires, 1428, Argentina
Palabras clave:Image processing; Conflict situation; Controlled experiment; Direction of motion; Experimental characterization; Pedestrian dynamics; Pedestrian experiments; Relative orientation; Two-dimensional trajectory; Trajectories; accident prevention; human; movement (physiology); pedestrian; physiology; probability; Accident Prevention; Humans; Movement; Pedestrians; Probability
Año:2016
Volumen:94
Número:2
DOI: http://dx.doi.org/10.1103/PhysRevE.94.022318
Título revista:Physical Review E
Título revista abreviado:Phys. Rev. E
ISSN:24700045
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24700045_v94_n2_p_Parisi

Referencias:

  • Helbing, D., Molnar, P., Social force model for pedestrian dynamics (1995) Phys. Rev. e, 51, p. 4282
  • Helbing, D., Farkas, I.J., Vicsek, T., Simulating dynamical features of escape panic (2000) Nature (London), 407, p. 487
  • Kirchner, A., Schadschneider, A., Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics (2002) Physica A, 312, p. 260
  • Moussaïd, M., Helbing, D., Theraulaz, G., How simple rules determine pedestrian behavior and crowd disasters (2011) Proc. Natl. Acad. Sci. USA, 108, p. 6884
  • Karamouzas, I., Heil, P., Van Beek, P., Overmars, M.H., (2009) Motion in Games, pp. 41-52. , A Predictive Collision Avoidance Model for Pedestrian Simulation, (Springer, Berlin/Heidelberg)
  • Wang, Q.-L., Chen, Y., Dong, H.-R., Zhou, M., Ning, B., A new collision avoidance model for pedestrian dynamics (2015) Chin. Phys. B, 24, p. 038901
  • Bamberger, J., Geßler, A.L., Heitzelmann, P., Korn, S., Kahlmeyer, R., Lu, X.H., Sang, Q.H., Kretz, T., (2015) Traffic and Granular Flow '13, pp. 137-144. , Crowd Research at School: Crossing Flows, (Springer, Cham, Switzerland)
  • Lian, L., Mai, X., Song, W., Richard, Y.K.K., Wei, X., Ma, J., An experimental study on four-directional intersecting pedestrian flows J. Stat. Mech.: Theory Exp., 2015, p. P08024
  • Paris, S., Pettr, J., Donikian, S., Pedestrian reactive navigation for crowd simulation: A predictive approach (2007) Comput. Graph. Forum, 26, p. 665
  • Ingólfsson, E.T., Georgakis, C.T., Jönsson, J., Pedestrian-induced lateral vibrations of footbridges: A literature review (2012) Eng. Struct., 45, p. 21
  • Fruin, J.J., (1971) Pedestrian Planning and Design, , edited by University of Michigan (Metropolitan Association of Urban Designers and Environmental Planners, Michigan, USA)
  • Pauls, J.L., (2006) ASSE Professional Development Conference and Exposition, pp. 11-14. , Stairways and ergonomics, (American Society of Safety Engineers, Seattle)
  • Chraibi, M., Seyfried, A., Schadschneider, A., Generalized centrifugal-force model for pedestrian dynamics (2010) Phys. Rev. e, 82, p. 046111
  • Krausz, B., Bauckhage, C., (2014) Pedestrian and Evacuation Dynamics 2012, pp. 729-737. , Integrating Lateral Swaying of Pedestrians into Simulations, (Springer, Cham)
  • Hoogendoorn, S.P., Daamen, W., Pedestrian behavior at bottlenecks (2005) Transportation Science, 39, p. 147
  • KadewTraKuPong, P., Bowden, R., (2001) Video-Based Surveillance Systems, Computer Vision and Distributed Processing, pp. 135-144. , An improved adaptive background mixture model for real-time tracking with shadow detection, (Springer, Berlin)
  • Comaniciu, D., Ramesh, V., Meer, P., (2000) IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, 2000, pp. 142-149. , Real-time tracking of non-rigid objects using mean shift, in, (IEEE, Piscataway, NJ), Vol. 2
  • Santana-Cedrés, D., Gomez, L., Aleman-Flores, M., Salgado, A., Esclarín, J., Mazorra, L., Alvarez, L., Invertibility and estimation of two-parameter polynomial and division lens distortion models (2015) SIAM J. Imaging Sci., 8, p. 1574
  • Horaud, R., Monga, O., (1995) Vision Par Ordinateur: Outils Fondamentaux, , 2nd ed. (Hermes, New Castle, PA)
  • Oberkampf, D., DeMenthon, D.F., Davis, L.S., Iterative Pose Estimation Using Coplanar Feature Points (1996) Comput. Vis. Image Underst., 63, p. 495
  • Wasserman, P.D., (1993) Advanced Methods in Neural Computing, , (Van Nostrand-Reinhold, New York)

Citas:

---------- APA ----------
Parisi, D.R., Negri, P.A. & Bruno, L. (2016) . Experimental characterization of collision avoidance in pedestrian dynamics. Physical Review E, 94(2).
http://dx.doi.org/10.1103/PhysRevE.94.022318
---------- CHICAGO ----------
Parisi, D.R., Negri, P.A., Bruno, L. "Experimental characterization of collision avoidance in pedestrian dynamics" . Physical Review E 94, no. 2 (2016).
http://dx.doi.org/10.1103/PhysRevE.94.022318
---------- MLA ----------
Parisi, D.R., Negri, P.A., Bruno, L. "Experimental characterization of collision avoidance in pedestrian dynamics" . Physical Review E, vol. 94, no. 2, 2016.
http://dx.doi.org/10.1103/PhysRevE.94.022318
---------- VANCOUVER ----------
Parisi, D.R., Negri, P.A., Bruno, L. Experimental characterization of collision avoidance in pedestrian dynamics. Phys. Rev. E. 2016;94(2).
http://dx.doi.org/10.1103/PhysRevE.94.022318