Artículo

Donnay, L.; Giribet, G.; González, H.A.; Puhm, A. "Black hole memory effect" (2018) Physical Review D. 98(12)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We compute the memory effect produced at the black hole horizon by a transient gravitational shock wave. As shown by Hawking, Perry, and Strominger (HPS) such a gravitational wave produces a deformation of the black hole geometry which from future null infinity is seen as a Bondi-Metzner-Sachs supertranslation. This results in a diffeomorphic but physically distinct geometry which differs from the original black hole by their charges at infinity. Here we give the complementary description of this physical process in the near-horizon region as seen by an observer hovering just outside the event horizon. From this perspective, in addition to a supertranslation the shock wave also induces a horizon superrotation. We compute the associated superrotation charge and show that its form agrees with the one obtained by HPS at infinity. In addition, there is a supertranslation contribution to the horizon charge, which measures the entropy change in the process. We then turn to electrically and magnetically charged black holes and generalize the near-horizon asymptotic symmetry analysis to Einstein-Maxwell theory. This reveals an additional infinite-dimensional current algebra that acts nontrivially on the horizon superrotations. Finally, we generalize the black hole memory effect to Reissner-Nordström black holes. © 2018 authors. Published by the American Physical Society.

Registro:

Documento: Artículo
Título:Black hole memory effect
Autor:Donnay, L.; Giribet, G.; González, H.A.; Puhm, A.
Filiación:Center for the Fundamental Laws of Nature, Harvard University, 17 Oxford Street, Cambridge, MA 02138, United States
Black Hole Initiative, Harvard University, 20 Garden Street, Cambridge, MA 02138, United States
Physics Department, University of Buenos Aires, IFIBA-CONICET Ciudad Universitaria, Pabellón 1, Buenos Aires, 1428, Argentina
Center for Cosmology and Particle Physics, New York University, 726 Broadway, New York, NY 10003, United States
Institute for Theoretical Physics, TU Wien, Wiedner Hauptstr. 8-10, Vienna, 1040, Austria
CPHT, Ecole Polytechnique, CNRS, Palaiseau, 91128, France
Año:2018
Volumen:98
Número:12
DOI: http://dx.doi.org/10.1103/PhysRevD.98.124016
Título revista:Physical Review D
Título revista abreviado:Phy. Rev. D
ISSN:24700010
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24700010_v98_n12_p_Donnay

Referencias:

  • Weinberg, S., Infrared photons and gravitons (1965) Phys. Rev., 140, p. B516
  • Bondi, H., Van Der Burg, M.G.J., Metzner, A.W.K., Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems (1962) Proc. R. Soc. A, 269, p. 21
  • Sachs, R.K., Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times (1962) Proc. R. Soc. A, 270, p. 103
  • Sachs, R., Asymptotic symmetries in gravitational theory (1962) Phys. Rev., 128, p. 2851
  • Zel'Dovich, Y., Polnarev, A., Radiation of gravitational waves by a cluster of superdense stars (1974) Sov. Astron., 18, p. 17
  • Christodoulou, D., Nonlinear Nature of Gravitation and Gravitational Wave Experiments (1991) Phys. Rev. Lett., 67, p. 1486
  • Barnich, G., Troessaert, C., Symmetries of Asymptotically Flat Four-Dimensional Spacetimes at Null Infinity Revisited (2010) Phys. Rev. Lett., 105, p. 111103
  • Barnich, G., Troessaert, C., BMS charge algebra J. High Energy Phys., 2011 (12), p. 105
  • Barnich, G., Troessaert, C., Aspects of the BMS/CFT correspondence J. High Energy Phys., 2010 (5), p. 062
  • Barnich, G., Troessaert, C., Comments on holographic current algebras and asymptotically flat four dimensional spacetimes at null infinity J. High Energy Phys., 2013 (11), p. 003
  • Strominger, A., On BMS invariance of gravitational scattering J. High Energy Phys., 2014 (7), p. 152
  • He, T., Lysov, V., Mitra, P., Strominger, A., BMS supertranslations and Weinberg's soft graviton theorem J. High Energy Phys., 2015 (5), p. 151
  • Cachazo, F., Strominger, A., Evidence for A New Soft Graviton Theorem, , 1404.4091
  • Kapec, D., Lysov, V., Pasterski, S., Strominger, A., Semiclassical Virasoro symmetry of the quantum gravity (Equation presented)-matrix J. High Energy Phys., 2014 (8), p. 058
  • Lysov, V., Pasterski, S., Strominger, A., Low's Subleading Soft Theorem as a Symmetry of QED (2014) Phys. Rev. Lett., 113, p. 111601
  • Strominger, A., Zhiboedov, A., Gravitational memory, BMS supertranslations and soft theorems J. High Energy Phys., 2016 (1), p. 086
  • Pasterski, S., Strominger, A., Zhiboedov, A., New gravitational memories J. High Energy Phys., 2016 (12), p. 053
  • Bieri, L., Garfinkle, D., An electromagnetic analogue of gravitational wave memory (2013) Classical Quantum Gravity, 30, p. 195009
  • Pasterski, S., Asymptotic symmetries and electromagnetic memory J. High Energy Phys., 2017 (9), p. 154
  • Pate, M., Raclariu, A.-M., Strominger, A., Gravitational memory in higher dimensions J. High Energy Phys., 2018 (6), p. 138
  • Strominger, A., Lectures on the Infrared Structure of Gravity and Gauge Theory, , 1703.05448
  • Hawking, S.W., The Information Paradox for Black Holes, , 1509.01147
  • Hawking, S.W., Perry, M.J., Strominger, A., Soft Hair on Black Holes (2016) Phys. Rev. Lett., 116, p. 231301
  • Strominger, A., Black Hole Information Revisited, , 1706.07143
  • Hawking, S.W., Perry, M.J., Strominger, A., Superrotation charge and supertranslation hair on black holes J. High Energy Phys., 2017 (5), p. 161
  • Donnay, L., Giribet, G., Gonzalez, H.A., Pino, M., Supertranslations and Superrotations at the Black Hole Horizon (2016) Phys. Rev. Lett., 116, p. 091101
  • Donnay, L., Giribet, G., González, H.A., Pino, M., Extended symmetries at the black hole horizon J. High Energy Phys., 2016 (9), p. 100
  • Barnich, G., Troessaert, C., Finite BMS transformations J. High Energy Phys., 2016 (3), p. 167
  • Blau, M., O'Loughlin, M., Horizon shells and BMS-like soldering transformations J. High Energy Phys., 2016 (3), p. 029
  • Afshar, H., Detournay, S., Grumiller, D., Merbis, W., Perez, A., Tempo, D., Troncoso, R., Soft Heisenberg hair on black holes in three dimensions (2016) Phys. Rev. D, 93, p. 101503
  • Mao, P., Wu, X., Zhang, H., Soft hairs on isolated horizon implanted by electromagnetic fields (2017) Classical Quantum Gravity, 34, p. 055003
  • Penna, R.F., BMS invariance and the membrane paradigm J. High Energy Phys., 2016 (3), p. 023
  • Penna, R.F., Near-horizon BMS symmetries as fluid symmetries J. High Energy Phys., 2017 (10), p. 049
  • Lust, D., Supertranslations and holography near the horizon of Schwarzschild black holes (2018) Fortschr. Phys., 66, p. 1800001
  • Bousso, R., Porrati, M., Observable supertranslations (2017) Phys. Rev. D, 96, p. 086016
  • Eling, C., Oz, Y., On the membrane paradigm and spontaneous breaking of horizon BMS symmetries J. High Energy Phys., 2016 (7), p. 065
  • Chandrasekaran, V., Flanagan, E.E., Prabhu, K., Symmetries and charges of general relativity at null boundaries J. High Energy Phys., 2018 (11), p. 125
  • Barnich, G., Brandt, F., Covariant theory of asymptotic symmetries, conservation laws and central charges (2002) Nucl. Phys., B633, p. 3
  • Barnich, G., Lambert, P.-H., Einstein-Yang-Mills theory: Asymptotic symmetries (2013) Phys. Rev. D, 88, p. 103006
  • Barnich, G., Lambert, P.-H., Mao, P., Three-dimensional asymptotically flat Einstein-Maxwell theory (2015) Classical Quantum Gravity, 32, p. 245001
  • Henneaux, M., Troessaert, C., Asymptotic symmetries of electromagnetism at spatial infinity J. High Energy Phys., 2018 (5), p. 137
  • Maitra, M., Maity, D., Majhi, B.R., Symmetries near a generic charged null surface and associated algebra: An off-shell analysis (2018) Phys. Rev. D, 97, p. 124065
  • Lucietti, J., Murata, K., Reall, H.S., Tanahashi, N., On the horizon instability of an extreme Reissner-Nordstróm black hole J. High Energy Phys., 2013 (3), p. 035
  • Dafermos, M., Rodnianski, I., Lectures on black holes and linear waves (2013) Clay Math. Proc., 17, p. 97
  • Dafermos, M., Rodnianski, I., The black hole stability problem for linear scalar perturbations (2012) Proceedings of the 12th Marcel Grossmann Meeting, pp. 132-189. , 1010.5137 (World Scientific, Singapore)
  • Garfinkle, D., Rey, S.-J., Angular momentum of an electric charge and magnetically charged black hole (1991) Phys. Lett. B, 257, p. 158
  • Bunster, C., Henneaux, M., A Monopole Near A Black Hole, , hep-th/0703155
  • Hartman, T., Murata, K., Nishioka, T., Strominger, A., CFT duals for extreme black holes J. High Energy Phys., 2009 (4), p. 019

Citas:

---------- APA ----------
Donnay, L., Giribet, G., González, H.A. & Puhm, A. (2018) . Black hole memory effect. Physical Review D, 98(12).
http://dx.doi.org/10.1103/PhysRevD.98.124016
---------- CHICAGO ----------
Donnay, L., Giribet, G., González, H.A., Puhm, A. "Black hole memory effect" . Physical Review D 98, no. 12 (2018).
http://dx.doi.org/10.1103/PhysRevD.98.124016
---------- MLA ----------
Donnay, L., Giribet, G., González, H.A., Puhm, A. "Black hole memory effect" . Physical Review D, vol. 98, no. 12, 2018.
http://dx.doi.org/10.1103/PhysRevD.98.124016
---------- VANCOUVER ----------
Donnay, L., Giribet, G., González, H.A., Puhm, A. Black hole memory effect. Phy. Rev. D. 2018;98(12).
http://dx.doi.org/10.1103/PhysRevD.98.124016