Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The origin and nature of the ultrahigh energy cosmic rays remains a mystery. However, considerable progress has been achieved in past years due to observations performed by the Pierre Auger Observatory and Telescope Array. Above 1018 eV the observed energy spectrum presents two features: a hardening of the slope at ∼1018.6 eV, which is known as the ankle, and a suppression at ∼1019.6 eV. The composition inferred from the experimental data, interpreted by using the current high energy hadronic interaction models, seems to be light below the ankle, showing a trend to heavier nuclei for increasing values of the primary energy. Also, the anisotropy information is consistent with an extragalactic origin of this light component that would dominate the spectrum below the ankle. Therefore, the models that explain the ankle as the transition from the galactic and extragalactic components are disfavored by present data. Recently, it has been proposed that this light component originates from the photodisintegration of more energetic and heavier nuclei in the source environment. The formation of the ankle can also be explained by this mechanism. In this work, we study in detail this general scenario, but in the context of the central region of active galaxies. In this case, the cosmic rays are accelerated near the supermassive black hole present in the central region of these types of galaxies, and the photodisintegration of heavy nuclei takes place in the radiation field that surrounds the supermassive black hole. © 2018 American Physical Society.

Registro:

Documento: Artículo
Título:Origin of the light cosmic ray component below the ankle
Autor:Supanitsky, A.D.; Cobos, A.; Etchegoyen, A.
Filiación:Universidad de Buenos Aires, Facultad de Cs. Exactas y Naturales, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Astronomía y Física Del Espacio (IAFE), CC 67, Suc. 28, Buenos Aires, 1428, Argentina
Instituto de Tecnologías en Detección y Astropartículas Mendoza, Mendoza, 5501, Argentina
Año:2018
Volumen:98
Número:10
DOI: http://dx.doi.org/10.1103/PhysRevD.98.103016
Título revista:Physical Review D
Título revista abreviado:Phy. Rev. D
ISSN:24700010
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24700010_v98_n10_p_Supanitsky

Referencias:

  • Aab, A., (2015) Nucl. Instrum. Methods Phys. Res., Sect. A, 798, p. 172. , (Pierre Auger Collaboration)
  • Fukushima, M., (2003) Prog. Theor. Phys. Suppl., 151, p. 206
  • Patrignani, C., (2016) Chin. Phys. C, 40, p. 100001
  • Fenu, F., Proc. Sci., 2017, p. 486. , (Pierre Auger Collaboration)
  • Ivanov, D., Proc. Sci., 2015, p. 349. , (Telescope Array Collaboration)
  • Ivanov, D., Proc. Sci., 2017, p. 498. , (Pierre Auger and Telescope Array Collaborations)
  • Supanitsky, A.D., Etchegoyen, A., Medina-Tanco, G., Allekotte, I., Gómez Berisso, M., Medina, M.C., (2008) Astropart. Phys., 29, p. 461
  • Pierog, T., Proc. Sci., 2017, p. 1100
  • Aab, P., (2014) Phys. Rev. D, 90, p. 122005. , (Pierre Auger Collaboration)
  • Abbasi, R., (2015) Astropart. Phys., 64, p. 49. , (Telescope Array Collaboration)
  • De Souza, V., Proc. Sci., 2017, p. 522. , (Pierre Auger Collaboration)
  • Abreu, P., (2012) Astrophys. J. Suppl. Ser., 203, p. 34. , (Pierre Auger Collaboration)
  • Aloisio, R., Berezinsky, V., Blasi, P., J. Cosmol. Astropart. Phys., 2014 (10), p. 020
  • Unger, M., Farrar, G., Anchordoqui, L., (2015) Phys. Rev. D, 92, p. 123001
  • Anchordoqui, L., Proc. Sci., 2017, p. 001
  • Globus, N., Allard, D., Parizot, E., Mochkovitch, R., (2015) Mon. Not. R. Astron. Soc., 451, p. 751
  • Globus, N., Allard, D., Parizot, E., (2015) Phys. Rev. D, 92, p. 021302
  • Kachelrieß, M., Kalashev, O., Ostapchenko, S., Semikoz, D., (2017) Phys. Rev. D, 96, p. 083006
  • Batista, R.A., Dundovic, A., Erdmann, M., Kampert, K.-H., Kuempel, D., Müller, G., Sigl, G., Winchen, T., J. Cosmol. Astropart. Phys., 2016 (5), p. 038
  • Mücke, A., Engel, R., Rachen, J., Protheroe, R., Stanev, T., (2000) Comput. Phys. Commun., 124, p. 290
  • Kachelrieß, M., Ostapchenko, S., Tomàs, R., (2009) New J. Phys., 11, p. 065017
  • Szabo, A., Protheroe, R., (1994) Astropart. Phys., 2, p. 375
  • https://github.com/CRPropa/CRPropa3-data; Protheroe, R.J., Meli, A., Donea, A.C., (2003) Space Sci. Rev., 107, p. 369
  • Harari, D., Mollerach, S., Roulet, E., (2014) Phys. Rev. D, 89, p. 123001
  • Allard, D., Parizot, E., Olinto, A., Khan, E., Goriely, S., (2005) Astron. Astrophys., 443, p. L29
  • Aab, P., J. Cosmol. Astropart. Phys., 2017 (4), p. 038. , (Pierre Auger Collaboration)
  • Blandford, R., (1976) Mon. Not. R. Astron. Soc., 176, p. 465
  • Kneiske, T., Bretz, T., Mannheim, K., Hartmann, D., (2004) Astron. Astrophys., 413, p. 807
  • Aloisio, R., Boncioli, D., Di Matteo, A., Grillo, A.F., Petrera, S., Salamida, F., J. Cosmol. Astropart. Phys., 2015 (10), p. 006
  • Pierog, T., Karpenko, I., Katzy, J., Yatsenko, E., Werner, K., (2015) Phys. Rev. C, 92, p. 034906
  • Ostapchenko, S., (2011) Phys. Rev. D, 83, p. 014018
  • Ostapchenko, S., (2011) Proceedings of the 32nd International Cosmic Ray Conference, 2, p. 71. , (Institute of High Energy Physics, Beijing)
  • Riehn, F., Proc. Sci., 2015, p. 558
  • Ackermann, M., (2015) Astrophys. J., 799, p. 86
  • Supanitsky, A.D., (2016) Phys. Rev. D, 94, p. 063002
  • Ackermann, M., (2016) Phys. Rev. Lett., 116, p. 151105
  • Aartsen, M.G., (2018) Phys. Rev. D, 98, p. 062003
  • Zas, E., Proc. Sci., 2017, p. 972. , (Pierre Auger Collaboration)
  • Aloisio, R., Berezinsky, V., Gazizov, A., (2011) Astropart. Phys., 34, p. 620
  • Berezinsky, V., Gazizov, A., Kalashev, O., (2016) Astropart. Phys., 84, p. 52
  • Ho, L., Filippenko, A., Sargent, W., (1997) Astrophys. J. Suppl. Ser., 112, p. 315
  • Ho, L., (1999) Astrophys. J., 516, p. 672
  • Aartsen, M., (2013) Science, 342, p. 1242856. , (IceCube Collaboration)
  • Kimura, S., Murase, K., Toma, K., (2015) Astrophys. J., 806, p. 159
  • Khiali, B., Gouveia Dal Pino, E., (2016) Mon. Not. R. Astron. Soc., 455, p. 838
  • Hasinger, G., Miyaji, T., Schmidt, M., (2005) Astron. Astrophys., 441, p. 417
  • Ajello, M., (2014) Astrophys. J., 780, p. 73
  • Figueira, J.M., Proc. Sci., 2017, p. 396. , (Pierre Auger Collaboration)

Citas:

---------- APA ----------
Supanitsky, A.D., Cobos, A. & Etchegoyen, A. (2018) . Origin of the light cosmic ray component below the ankle. Physical Review D, 98(10).
http://dx.doi.org/10.1103/PhysRevD.98.103016
---------- CHICAGO ----------
Supanitsky, A.D., Cobos, A., Etchegoyen, A. "Origin of the light cosmic ray component below the ankle" . Physical Review D 98, no. 10 (2018).
http://dx.doi.org/10.1103/PhysRevD.98.103016
---------- MLA ----------
Supanitsky, A.D., Cobos, A., Etchegoyen, A. "Origin of the light cosmic ray component below the ankle" . Physical Review D, vol. 98, no. 10, 2018.
http://dx.doi.org/10.1103/PhysRevD.98.103016
---------- VANCOUVER ----------
Supanitsky, A.D., Cobos, A., Etchegoyen, A. Origin of the light cosmic ray component below the ankle. Phy. Rev. D. 2018;98(10).
http://dx.doi.org/10.1103/PhysRevD.98.103016