Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We consider the evolution of the gravitational wave spectrum for super-Hubble modes in interaction with a relativistic fluid, which is regarded as an effective description of fluctuations in a light scalar minimally coupled field, during the earliest epoch of the radiation dominated era after the end of inflation. We obtain the initial conditions for gravitons and fluid from quantum fluctuations at the end of inflation, and assume instantaneous reheating. We model the fluid by using relativistic causal hydrodynamics. There are two dimensionful parameters, the relaxation time τ and temperature. In particular we study the interaction between gravitational waves and the nontrivial tensor (spin 2) part of the fluid energy-momentum tensor. Our main result is that the new dimensionful parameter τ introduces a new relevant scale which distinguishes two kinds of super-Hubble modes. For modes with H-1<λ<τ the fluid-graviton interaction increases the amplitude of the primordial gravitational wave spectrum at the electroweak transition by a factor of about 1.3 with respect to the usual scale invariant spectrum. © 2018 American Physical Society.

Registro:

Documento: Artículo
Título:Primordial gravitational waves amplification from causal fluids
Autor:Miron-Granese, N.; Calzetta, E.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, C1428EGA, Argentina
CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, C1428EGA, Argentina
Año:2018
Volumen:97
Número:2
DOI: http://dx.doi.org/10.1103/PhysRevD.97.023517
Título revista:Physical Review D
Título revista abreviado:Phy. Rev. D
ISSN:24700010
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24700010_v97_n2_p_MironGranese

Referencias:

  • Weinberg, S., (2008) Cosmology, , (Oxford University Press, New York)
  • Grishchuk, L., Amplification of gravitational waves in an isotropic universe (1975) Sov. Phys. JETP, 40, p. 409
  • Starobinsky, A.A., Spectrum of relict gravitational radiation and the early state of the universe (1979) Sov. Phys. JETP Lett, 30, p. 682
  • Israel, W., (1989) Relativistic Fluid Dynamics: Lectures Given at the 1st 1987 Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) Held at Noto, Italy, 1987, p. 152. , edited by A. M. Anile and Y. Choquet-Bruhat (Springer Berlin Heidelberg, Berlin, Heidelberg), p
  • Rezzolla, L., Zanotti, O., (2013) Relativistic Hydrodynamics, , (Oxford University Press, New York)
  • Romatschke, P., New developments in relativistic viscous hydrodynamics (2010) Int. J. Mod. Phys. e, 19, p. 1
  • Strickland, M., Anisotropic hydrodynamics: Three lectures (2014) Acta Phys. Pol. B, 45, p. 2355
  • Heinz, U., Towards the little bang standard model (2013) J. Phys. Conf. Ser, 455, p. 012044
  • Blas, D., Nacir, D.L., Sibiryakov, S., Ultralight Dark Matter Resonates with Binary Pulsars (2017) Phys. Rev. Lett, 118, p. 261102
  • Hui, L., Ostriker, J.P., Tremaine, S., Witten, E., Ultralight scalars as cosmological dark matter (2017) Phys. Rev. D, 95, p. 043541
  • Kiefer, C., Polarski, D., Starobinsky, A.A., Quantum-to-classical transition for fluctuations in the early universe (1998) Int. J. Mod. Phys. D, 7, p. 455
  • Campo, D., Parentani, R., Decoherence and entropy of primordial fluctuations. I. Formalism and interpretation (2008) Phys. Rev. D, 78, p. 065044
  • Lombardo, F.C., López Nacir, D., Decoherence during inflation: The generation of classical inhomogeneities (2005) Phys. Rev. D, 72, p. 063506
  • Calzetta, E.A., Hu, B.-L., (2008) Nonequilibrium Quantum Field Theory, , (Cambridge University Press, Cambridge, England)
  • Franco, M., Calzetta, E., Decoherence in the cosmic background radiation (2011) Classical Quantum Gravity, 28, p. 145024
  • Calzetta, E., Chaos, decoherence and quantum cosmology (2012) Classical Quantum Gravity, 29, p. 143001
  • Hiscock, W.A., Lindblom, L., Stability and causality in dissipative relativistic fluids (1983) Ann. Phys. (N.Y.), 151, p. 466
  • Hiscock, W.A., Lindblom, L., Generic instabilities in first-order dissipative relativistic fluid theories (1985) Phys. Rev. D, 31, p. 725
  • Hiscock, W.A., Lindblom, L., Stability in dissipative relativistic fluid theories (1988) Contemp. Math, 71, p. 181
  • Joseph, D.D., Preziosi, L., Heat waves (1989) Rev. Mod. Phys, 61, p. 41
  • Boyanovsky, D., De Vega, H.J., Holman, R., Salgado, J.F.J., Analytic and numerical study of preheating dynamics (1996) Phys. Rev. D, 54, p. 7570
  • Kofman, L., Linde, A., Starobinsky, A.A., Towards the theory of reheating after inflation (1997) Phys. Rev. D, 56, p. 3258
  • Ramsey, S.A., Hu, B.L., Nonequilibrium inflaton dynamics and reheating: Back reaction of parametric particle creation and curved spacetime effects (1997) Phys. Rev. D, 56, p. 678
  • Bassett, B.A., Tsujikawa, S., Wands, D., Inflation dynamics and reheating (2006) Rev. Mod. Phys, 78, p. 537
  • Pearce, L., Peloso, M., Sorbo, L., Resonant particle production during inflation: A full analytical study J. Cosmol. Astropart. Phys, 2017 (5), p. 054
  • Petrov, A.Z., (1969) Einstein Spaces, , (Pergamon Press, Oxford)
  • Dash, A., Jaiswal, A., Metric Anisotropies and Emergent Anisotropic Hydrodynamics, , arXiv:1711.07130v2
  • Liu, I.-S., Method of lagrange multipliers for exploitation of the entropy principle (1972) Arch. Ration. Mech. Anal, 46, p. 131
  • Liu, I.-S., Müller, I., Ruggeri, T., Relativistic thermodynamics of gases (1986) Ann. Phys. (N.Y.), 169, p. 191
  • Geroch, R., Lindblom, L., Dissipative relativistic fluid theories of divergence type (1990) Phys. Rev. D, 41, p. 1855
  • Geroch, R., Lindblom, L., Causal theories of dissipative relativistic fluids (1991) Ann. Phys. (N.Y.), 207, p. 394
  • Reula, O.A., Nagy, G.B., A causal statistical family of dissipative divergence-type fluids (1997) J. Phys. A, 30, p. 1695
  • Calzetta, E., Relativistic fluctuating hydrodynamics (1998) Classical Quantum Gravity, 15, p. 653
  • Calzetta, E., Hydrodynamic approach to boost invariant free streaming (2015) Phys. Rev. D, 92, p. 045035
  • Peralta-Ramos, J., Calzetta, E., Divergence-type nonlinear conformal hydrodynamics (2009) Phys. Rev. D, 80, p. 126002
  • Peralta-Ramos, J., Calzetta, E., Divergence-type (Equation presented) dissipative hydrodynamics applied to heavy-ion collisions (2010) Phys. Rev. C, 82, p. 054905
  • Peralta-Ramos, J., Calzetta, E., Divergence-type theory of conformal fields (2010) Int. J. Mod. Phys. D, 19, p. 1721
  • Podolsky, D., Felder, G.N., Kofman, L., Peloso, M., Equation of state and beginning of thermalization after preheating (2006) Phys. Rev. D, 73, p. 023501
  • Lehner, L., Reula, O.A., Rubio, M.E., A hyperbolic theory of relativistic conformal dissipative fluids Phys. Rev. D, , arXiv:1710.08033v1 [(to be published)]
  • Calzetta, E.A., Kandus, A., Mazzitelli, F.D., Primordial magnetic fields induced by cosmological particle creation (1998) Phys. Rev. D, 57, p. 7139
  • Kandus, A., Calzetta, E.A., Mazzitelli, F.D., Wagner, C.E., Cosmological magnetic fields from gauge-mediated supersymmetry-breaking models (2000) Phys. Lett. B, 472, p. 287
  • Calzetta, E., Kandus, A., Self-consistent estimates of magnetic fields from reheating (2002) Phys. Rev. D, 65, p. 063004
  • Calzetta, E., Kandus, A., Primordial magnetic field amplification from turbulent reheating J. Cosmol. Astropart. Phys, 2010 (8), p. 007
  • Calzetta, E., Kandus, A., Primordial magnetic helicity from stochastic electric currents (2014) Phys. Rev. D, 89, p. 083012
  • Mollerach, S., Harari, D., Matarrese, S., Cmb polarization from secondary vector and tensor modes (2004) Phys. Rev. D, 69, p. 063002
  • Noh, H., Hwang, J.-C., Second-order perturbations of the friedmann world model (2004) Phys. Rev. D, 69, p. 104011
  • Bartolo, N., Matarrese, S., Riotto, A., Enhancement of non-gaussianity after inflation J. High Energy Phys, 2004 (4), p. 006
  • Watanabe, Y., Komatsu, E., Improved calculation of the primordial gravitational wave spectrum in the standard model (2006) Phys. Rev. D, 73, p. 123515
  • Dufaux, J.F., Bergman, A., Felder, G., Kofman, L., Uzan, J.-P., Theory and numerics of gravitational waves from preheating after inflation (2007) Phys. Rev. D, 76, p. 123517
  • Price, L.R., Siemens, X., Stochastic backgrounds of gravitational waves from cosmological sources: Techniques and applications to preheating (2008) Phys. Rev. D, 78, p. 063541
  • Guzzetti, M.C., Bartolo, N., Liguori, M., Matarrese, S., Gravitational waves from inflation (2016) Riv. Nuovo Cimento, 39, p. 399
  • Bethke, L.B., (2015) Exploring the Early Universe with Gravitational Waves, , (Springer, New York)
  • Hsiang, J.-T., Ford, L.H., Ng, K.-W., Wu, C.-H., Quantum stress tensor fluctuations and primordial gravity waves (2017) Phys. Rev. D, 95, p. 063524
  • Barnaby, N., Moxon, J., Namba, R., Peloso, M., Shiu, G., Zhou, P., Gravity waves and non-gaussian features from particle production in a sector gravitationally coupled to the inflaton (2012) Phys. Rev. D, 86, p. 103508
  • Bethke, L., Figueroa, D.G., Rajantie, A., On the anisotropy of the gravitational wave background from massless preheating J. Cosmol. Astropart. Phys, 2014 (6), p. 047
  • Masina, I., Gravitational wave background and higgs false vacuum inflation (2014) Phys. Rev. D, 89, p. 123505
  • García-Bellido, J., Figueroa, D.G., Stochastic background of gravitational waves from hybrid preheating (2007) Phys. Rev. Lett, 98, p. 061302
  • García-Bellido, J., Figueroa, D.G., Sastre, A., Gravitational wave background from reheating after hybrid inflation (2008) Phys. Rev. D, 77, p. 043517
  • Assadullahi, H., Wands, D., Gravitational waves from an early matter era (2009) Phys. Rev. D, 79, p. 083511
  • Hyde, J.M., Sensitivity of gravitational waves from preheating to a scalar field's interactions (2015) Phys. Rev. D, 92, p. 044026
  • Figueroa, D.G., Meriniemi, T., Stochastic background of gravitational waves from fermions - Theory and applications J. High Energy Phys, 2013 (10), p. 101
  • Lin, W., Ishak, M., Testing gravity theories using tensor perturbations (2016) Phys. Rev. D, 94, p. 123011
  • Figueroa, D.G., García-Bellido, J., Torrentí, F., Decay of the standard model higgs field after inflation (2015) Phys. Rev. D, 92, p. 083511
  • Figueroa, D.G., García-Bellido, J., Torrentí, F., Gravitational wave production from the decay of the standard model higgs field after inflation (2016) Phys. Rev. D, 93, p. 103521
  • Starobinsky, A.A., Yokoyama, J., Equilibrium state of a self-interacting scalar field in the de sitter background (1994) Phys. Rev. D, 50, p. 6357
  • Parker, L., Toms, D., (2009) Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity, , (Cambridge University Press, Cambridge, England)
  • Markkanen, T., Renormalization of the Inflationary Perturbations Revisited, , arXiv:1712.02372v1
  • Aguilar, M., Calzetta, E., Causal relativistic hydrodynamics of conformal fermi-dirac gases (2017) Phys. Rev. D, 95, p. 076022
  • Florkowski, W., Ryblewski, R., Spaliński, M., Gradient expansion for anisotropic hydrodynamics (2016) Phys. Rev. D, 94, p. 114025
  • Florkowski, W., Maksymiuk, E., Ryblewski, R., Tinti, L., Anisotropic hydrodynamics for a mixture of quark and gluon fluids (2015) Phys. Rev. C, 92, p. 054912
  • Tinti, L., Anisotropic matching principle for the hydrodynamic expansion (2016) Phys. Rev. C, 94, p. 044902
  • Molnár, E., Niemi, H., Rischke, D.H., Derivation of anisotropic dissipative fluid dynamics from the boltzmann equation (2016) Phys. Rev. D, 93, p. 114025
  • Tinti, L., Ryblewski, R., Florkowski, W., Strickland, M., Testing different formulations of leading-order anisotropic hydrodynamics (2016) Nucl. Phys, A946, p. 29
  • Florkowski, W., Ryblewski, R., Strickland, M., Tinti, L., Non-boost-invariant dissipative hydrodynamics (2016) Phys. Rev. C, 94, p. 064903
  • Peralta-Ramos, J., Calzetta, E., Macroscopic approximation to relativistic kinetic theory from a nonlinear closure (2013) Phys. Rev. D, 87, p. 034003
  • Anderson, J., Witting, H., A relativistic relaxation-time model for the boltzmann equation (1974) Physica (Amsterdam), 74, p. 466
  • Anderson, J., Witting, H., Relativistic quantum transport coefficients (1974) Physica (Amsterdam), 74, p. 489
  • Takamoto, M., Inutsuka, S.-I., The relativistic kinetic dispersion relation: Comparison of the relativistic bhatnagar-gross-krook model and grad's 14-moment expansion (2010) Physica A (Amsterdam), 389, p. 4580
  • Calzetta, E., Kandus, A., A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas (2016) Int. J. Mod. Phys. A, 31, p. 1650194
  • Ford, L.H., Parker, L., Quantized gravitational wave perturbations in robertson-walker universes (1977) Phys. Rev. D, 16, p. 1601
  • Dodelson, S., (2003) Modern Cosmology, , (Academic Press, New York)
  • Landau, L., Lifshitz, E., (2013) Statistical Physics, 5. , (Elsevier Science, New York), Vol
  • Hu, B.L., Verdaguer, E., Stochastic gravity: Theory and applications (2008) Living Rev. Relativity, 11, p. 3
  • Dufaux, J.-F., Felder, G., Kofman, L., Navros, O., Gravity waves from tachyonic preheating after hybrid inflation J. Cosmol. Astropart. Phys, 2009 (3), p. 001
  • Perez-Nadal, G., Roura, A., Verdaguer, E., Stress tensor fluctuations in de sitter spacetime J. Cosmol. Astropart. Phys, 2010 (5), p. 036
  • Berera, A., Gleiser, M., Ramos, R.O., Strong dissipative behavior in quantum field theory (1998) Phys. Rev. D, 58, p. 123508
  • Marsh, D.J., Axion cosmology (2016) Phys. Rep, 643, p. 1. , axion cosmology
  • Diez-Tejedor, A., Marsh, D.J., Cosmological Production of Ultralight Dark Matter Axions, , arXiv:1702.02116
  • Marsh, D.J.E., Axions and Alps: A Very Short Introduction, , arXiv:1712.03018v1
  • Abel, C., Search for axionlike dark matter through nuclear spin precession in electric and magnetic fields (2017) Phys. Rev. X, 7, p. 041034
  • Strickland, M., Thermalization and isotropization in heavy-ion collisions (2015) Pramana, 84, p. 671
  • Romatschke, P., Do nuclear collisions create a locally equilibrated quark-gluon plasma? (2017) Eur. Phys. J. C, 77, p. 21
  • Strickland, M., Noronha, J., Denicol, G., The Anisotropic Non-equilibrium Hydrodynamic Attractor, , arXiv:1709.06644v1
  • Kurkela, A., Wiedemann, U.A., Analytic Structure of Nonhydrodynamic Modes in Kinetic Theory, , arXiv:1712.04376v1
  • Behtash, A., Cruz-Camacho, C.N., Martinez, M., Far-from-equilibrium Attractors and Nonlinear Dynamical Systems Approach to the Gubser Flow, , arXiv:1711.01745v2
  • Spaliński, M., On the hydrodynamic attractor of yang-mills plasma (2018) Phys. Lett. B, p. 776. , 468
  • Florkowski, W., Heller, M.P., Spaliński, M., New Theories of Relativistic Hydrodynamics in the Lhc Era, , arXiv:1707.02282v3

Citas:

---------- APA ----------
Miron-Granese, N. & Calzetta, E. (2018) . Primordial gravitational waves amplification from causal fluids. Physical Review D, 97(2).
http://dx.doi.org/10.1103/PhysRevD.97.023517
---------- CHICAGO ----------
Miron-Granese, N., Calzetta, E. "Primordial gravitational waves amplification from causal fluids" . Physical Review D 97, no. 2 (2018).
http://dx.doi.org/10.1103/PhysRevD.97.023517
---------- MLA ----------
Miron-Granese, N., Calzetta, E. "Primordial gravitational waves amplification from causal fluids" . Physical Review D, vol. 97, no. 2, 2018.
http://dx.doi.org/10.1103/PhysRevD.97.023517
---------- VANCOUVER ----------
Miron-Granese, N., Calzetta, E. Primordial gravitational waves amplification from causal fluids. Phy. Rev. D. 2018;97(2).
http://dx.doi.org/10.1103/PhysRevD.97.023517