Artículo

Kraiselburd, L.; Landau, S.J.; Salgado, M.; Sudarsky, D.; Vucetich, H. "Equivalence principle in chameleon models" (2018) Physical Review D. 97(10)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Most theories that predict time and/or space variation of fundamental constants also predict violations of the weak equivalence principle (WEP). In 2004 Khoury and Weltman [1] proposed the so called chameleon field arguing that it could help avoiding experimental bounds on the WEP while having a nontrivial cosmological impact. In this paper we revisit the extent to which these expectations continue to hold as we enter the regime of high precision tests. The basis of the study is the development of a new method for computing the force between two massive bodies induced by the chameleon field which takes into account the influence on the field by both, the large and the test bodies. We confirm that in the thin shell regime the force does depend nontrivially on the test body's composition, even when the chameleon coupling constants βi=β are universal. We also propose a simple criterion based on energy minimization, that we use to determine which of the approximations used in computing the scalar field in a two body problem is better in each specific regime. As an application of our analysis we then compare the resulting differential acceleration of two test bodies with the corresponding bounds obtained from Eötvös type experiments. We consider two setups: (1) an Earth based experiment where the test bodies are made of Be and Al; (2) the Lunar Laser Ranging experiment. We find that for some choices of the free parameters of the chameleon model the predictions of the Eötvös parameter are larger than some of the previous estimates. As a consequence, we put new constrains on these free parameters. Our conclusions strongly suggest that the properties of immunity from experimental tests of the WEP, usually attributed to the chameleon and related models, should be carefully reconsidered. An important result of our analysis is that our approach leads to new constraints on the parameter space of the chameleon models. © 2018 American Physical Society.

Registro:

Documento: Artículo
Título:Equivalence principle in chameleon models
Autor:Kraiselburd, L.; Landau, S.J.; Salgado, M.; Sudarsky, D.; Vucetich, H.
Filiación:Grupo de Astrofísica Relatividad y Cosmología, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de la Plata, Paseo del Bosque S/N, La Plata, 1900, Argentina
CONICET, Godoy Cruz 2290, Ciudad Autónoma de Buenos Aires, 1425, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBA, Ciudad Universitaria - Pab. I, Buenos Aires, 1428, Argentina
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, México D.F., 04510, Mexico
Department of Philosophy, New York University, New York, NY 10003, United States
Año:2018
Volumen:97
Número:10
DOI: http://dx.doi.org/10.1103/PhysRevD.97.104044
Título revista:Physical Review D
Título revista abreviado:Phy. Rev. D
ISSN:24700010
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24700010_v97_n10_p_Kraiselburd

Referencias:

  • Khoury, J., Weltman, A., (2004) Phys. Rev. Lett., 93, p. 171104
  • Khoury, J., Weltman, A., (2004) Phys. Rev. D, 69, p. 044026
  • Wald, R., (1972) Phys. Rev. D, 6, p. 406
  • Papapetrou, A., (1951) Proc. R. Soc. A, 209, p. 248
  • Corinaldesi, E., Papapetrou, A., (1951) Proc. R. Soc. A, 209, p. 259
  • Dixon, W.G., (1970) Proc. R. Soc. A, 314, p. 499
  • Drummond, I.T., Hathrell, S.J., (1980) Phys. Rev. D, 22, p. 343
  • Bekenstein, J.D., (1982) Phys. Rev. D, 25, p. 1527
  • Barrow, J.D., Magueijo, J., Sandvik, H.B., (2002) Phys. Rev. D, 66, p. 043515
  • Olive, K.A., Pospelov, M., (2002) Phys. Rev. D, 65, p. 085044
  • Damour, T., Polyakov, A.M., (1994) Nucl. Phys., B423, p. 532
  • Palma, G.A., Brax, P., Davis, A.C., Van De Bruck, C., (2003) Phys. Rev. D, 68, p. 123519
  • Adelberger, E.G., Gundlach, J.H., Heckel, B.R., Hoedl, S., Schlamminger, S., (2009) Prog. Part. Nucl. Phys., 62, p. 102
  • Roll, P.G., Krotkov, R., Dicke, R.H., (1964) Ann. Phys. (N.Y.), 26, p. 442
  • Braginski, V.B., Panov, V.I., (1972) JETP, 34, p. 463
  • Keiser, G.M., Faller, J.E., (1982) Proceedings 2nd Marcel Grossman Meeting on General Relativity, p. 696
  • Su, Y., Heckel, B.R., Adelberger, E.G., Gundlach, J.H., Harris, M., Smith, G.L., Swanson, H.E., (1994) Phys. Rev. D, 50, p. 3614
  • Schlamminger, S., Choi, K.-Y., Wagner, T.A., Gundlach, J.H., Adelberger, E.G., (2008) Phys. Rev. Lett., 100, p. 041101
  • Damour, T., Piazza, F., Veneziano, G., (2002) Phys. Rev. Lett., 89, p. 081601
  • Brax, P., Van De Bruck, C., Davis, A.C., Khoury, J., Weltman, A., (2004) Phys. Rev. D, 70, p. 123518
  • Mota, D.F., Shaw, D.J., (2007) Phys. Rev. D, 75, p. 063501
  • Brax, P., Van De Bruck, C., Davis, A.C., Mota, D.F., Shaw, D., (2007) Phys. Rev. D, 76, p. 124034
  • Hui, L., Nicolis, A., Stubbs, C.W., (2009) Phys. Rev. D, 80, p. 104002
  • Brax, P., Van De Bruck, C., Mota, D.F., Nunes, N.J., Winther, H.A., (2010) Phys. Rev. D, 82, p. 083503
  • Brax, P., Burrage, C., (2011) Phys. Rev. D, 83, p. 035020
  • Brax, P., Davis, A.C., Li, B., Winther, H.A., (2012) Phys. Rev. D, 86, p. 044015
  • Upadhye, A., (2012) Phys. Rev. D, 86, p. 102003
  • Khoury, J., (2013) Classical Quantum Gravity, 30, p. 214004
  • Tamaki, T., Tsujikawa, S., (2008) Phys. Rev. D, 78, p. 084028
  • Saaidi, K., Aghamohammadi, A., (2011) Astrophys. Space Sci., 333, p. 327
  • Puetzfeld, D., Obukhov, Y.N., (2015) Phys. Rev. D, 92, p. 081502
  • Elder, B., Khoury, J., Haslinger, P., Jaffe, M., Müller, H., Hamilton, P., (2016) Phys. Rev. D, 94, p. 044051
  • Schlögel, S., Clesse, S., Füzfa, A., (2016) Phys. Rev. D, 93, p. 104036
  • Kraiselburd, L., Landau, S.J., Salgado, M., Sudarsky, D., Vucetich, H., (to be published); Kristensson, G., (2008), Course of Electromagnetic Wave Propagation, Faculty of Engineering, Lund University; Bruning, J., Lo, Y., (1971) IEEE Trans. Antennas Propag., 19, p. 378
  • Gumerov, N., Duraiswami, R., (2002) J. Acoust. Soc. Am., 112, p. 2688
  • Gumerov, N., Duraiswami, R., (2004) SIAM J. Sci. Comput., 25, p. 1344
  • Burrage, C., Copeland, E.J., Hinds, E.A., J. Cosmol. Astropart. Phys., 2015 (3), p. 042
  • Kraiselburd, L., Landau, S.J., Salgado, M., Sudarsky, D., Vucetich, H., (to be published); Will, C.M., (2014) Living Rev. Relativity, 17, p. 4
  • Adelberger, E.G., Stubbs, C.W., Heckel, B.R., Su, Y., Swanson, H.E., Smith, G., Gundlach, J.H., Rogers, W.F., (1990) Phys. Rev. D, 42, p. 3267
  • Landau, S.J., Pannia, F.A.T., Bonder, Y., Sudarsky, D., (2012) Astropart. Phys., 35, p. 377
  • Hamilton, P., Jaffe, M., Haslinger, P., Simmons, Q., Muller, H., Khoury, J., (2015) Science, 349, p. 849
  • Burrage, C., Sakstein, J., J. Cosmol. Astropart. Phys., 2016 (11), p. 045
  • Murphy, T.W., (2013) Rep. Prog. Phys., 76, p. 076901
  • Gannouji, R., Moraes, B., Mota, D.F., Polarski, D., Tsujikawa, S., Winther, H.A., (2010) Phys. Rev. D, 82, p. 124006
  • Vikram, V., Sakstein, J., Davis, C., Neil, A., ; Terukina, A., Lombriser, L., Yamamoto, K., Bacon, D., Koyama, K., Nichol, R.C., J. Cosmol. Astropart. Phys., 2014 (4), p. 013
  • Wilcox, H., (2015) Mon. Not. R. Astron. Soc., 452, p. 1171
  • Jain, B., Vikram, V., Sakstein, J., (2013) Astrophys. J., 779, p. 39
  • Jenke, T., (2014) Phys. Rev. Lett., 112, p. 151105
  • Bergé, J., Touboul, P., Rodrigues, M., (2015) J. Phys. Conf. Ser., 610, p. 012009. , (MICROSCOPE Team)
  • Hu, W., Sawicky, I., (2007) Phys. Rev. D, 76, p. 064004
  • Faulkner, T., Tegmark, M., Bunn, E.F., Mao, Y., (2007) Phys. Rev. D, 76, p. 063505
  • Capozziello, S., Tsujikawa, S., (2008) Phys. Rev. D, 77, p. 107501
  • Brax, P., Van De Bruck, C., Davis, A.C., Shaw, D.J., (2008) Phys. Rev. D, 78, p. 104021
  • Lombriser, L., Simpson, F., Mead, A., (2015) Phys. Rev. Lett., 114, p. 251101

Citas:

---------- APA ----------
Kraiselburd, L., Landau, S.J., Salgado, M., Sudarsky, D. & Vucetich, H. (2018) . Equivalence principle in chameleon models. Physical Review D, 97(10).
http://dx.doi.org/10.1103/PhysRevD.97.104044
---------- CHICAGO ----------
Kraiselburd, L., Landau, S.J., Salgado, M., Sudarsky, D., Vucetich, H. "Equivalence principle in chameleon models" . Physical Review D 97, no. 10 (2018).
http://dx.doi.org/10.1103/PhysRevD.97.104044
---------- MLA ----------
Kraiselburd, L., Landau, S.J., Salgado, M., Sudarsky, D., Vucetich, H. "Equivalence principle in chameleon models" . Physical Review D, vol. 97, no. 10, 2018.
http://dx.doi.org/10.1103/PhysRevD.97.104044
---------- VANCOUVER ----------
Kraiselburd, L., Landau, S.J., Salgado, M., Sudarsky, D., Vucetich, H. Equivalence principle in chameleon models. Phy. Rev. D. 2018;97(10).
http://dx.doi.org/10.1103/PhysRevD.97.104044