Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We obtain the Maxwell-Jüttner distribution function at first order in the post-Newtonian approximation within the framework of general relativity. Taking into account the aforesaid distribution function, we compute the particle four-flow and energy-momentum tensor. We focus on the search of static solutions for the gravitational potentials with spherical symmetry. In doing so, we obtain the density, pressure and gravitational potential energy profiles in terms of dimensionless radial coordinate by solving the aforesaid equations numerically. In particular, we find the parametric profile for the equation of state p/ρ in terms of the dimensionless radial coordinate. Due to its physical relevance, we also find the galaxy rotation curves using the post-Newtonian approximation. We join two different kinds of static solutions in order to account for the linear regime near the center and the typical flatten behavior at large radii as well. © 2016 American Physical Society.

Registro:

Documento: Artículo
Título:Self-gravitating systems of ideal gases in the 1PN approximation
Autor:Kremer, G.M.; Richarte, M.G.; Weber, K.
Filiación:Departamento de Física, Universidade Federal Do Paraná, Caixa Postal 19044, Curitiba, 81531-990, Brazil
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Pabellón I, Buenos Aires, Argentina
Año:2016
Volumen:93
Número:6
DOI: http://dx.doi.org/10.1103/PhysRevD.93.064073
Título revista:Physical Review D
Título revista abreviado:Phy. Rev. D
ISSN:24700010
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24700010_v93_n6_p_Kremer

Referencias:

  • Sparke, L.S., Gallagher, J.S., III, (2007) Galaxies in the Universe, , (Cambridge University Press, Cambridge, England)
  • Liddle, A., (2003) An Introduction to Modern Cosmology, , (John Wiley and Sons Inc., New York);
  • Klapdor, H., Arnowitt, R., (2004) Dark Matter in Astro-and Particle Physics, , (Springer, New York)
  • Jalocha, J., Bratek, L., Kutschera, M., Skindzier, P., Global disc models for galaxies NGC 1365, 6946, 7793 and UGC 6446 (2010) Mon. Not. R. Astron. Soc., 406, p. 2805
  • Jalocha, J., Bratek, L., Kutschera, M., Skindzier, P., Vertical gradients of azimuthal velocity in a global thin-disc model of spiral galaxies NGC 2403, NGC 4559, NGC 4302 and NGC 5775 (2011) Mon. Not. R. Astron. Soc., 412, p. 331
  • Jalocha, J., Sikora, S., Bratek, L., Kutschera, M., Constraining the vertical structure of the Milky Way rotation by microlensing in a finite-width global disk model (2014) Astron. Astrophys., 566, p. A87
  • Cercignani, C., Kremer, G.M., (2002) The Relativistic Boltzmann Equation: Theory and Applications, , (Birkhäuser, Basel)
  • Zimdahl, W., Kremer, G.M., Temperature oscillations of a gas in circular geodesic motion in the Schwarzschild field (2015) Phys. Rev. D, 91, p. 024003
  • Zemp, M., (2006), ETH Zurich, Master thesis; Agón, C.A., Pedraza, J.F., Ramos-Caro, J., Kinetic theory of collisionless self-gravitating gases: Post-Newtonian polytropes (2011) Phys. Rev. D, 83, p. 123007
  • Weinberg, S., (1972) Gravitation and Cosmology, Principles and Applications of the General Theory of Relativity, , (John Wiley & Sons, New York)
  • Balasin, H., Grumiller, D., Non-Newtonian behavior in weak field general relativity for extended rotating sources (2008) Int. J. Mod. Phys. D, 17, p. 475
  • Ramos-Caro, J., Agón, C.A., Pedraza, J.F., Kinetic theory of collisionless self-gravitating gases. II. Relativistic corrections in galactic dynamics (2012) Phys. Rev. D, 86, p. 043008
  • Nguyen, P.H., Pedraza, J.F., Anisotropic models for globular cluster, Galactic bulges, and dark halos (2013) Phys. Rev. D, 88, p. 064020
  • Chernikov, N.A., The relativistic gas in the gravitational field (1963) Acta Phys. Pol., 23, p. 629
  • Ehlers, J., (1967) Relativity Theory and Astrophysics 1 - Relativity and Cosmology, , (American Mathematical Society, University of Texas), Vol. 8
  • Bel, L., Kinetic theory of cosmology (1969) Astrophys. J., 155, p. 83
  • Israel, W., (1972) General Relativity, , edited by L. O'Raifeartaigh (Clarendon Press, Oxford)
  • Tolman, R.C., On the weight of heat and thermal equilibrium in general relativity (1930) Phys. Rev., 35, p. 904
  • Tolman, R.C., Ehrenfest, P., Temperature equilibrium in a static gravitational field (1930) Phys. Rev., 36, p. 1791
  • Klein, O., On the thermodynamical equilibrium of fluids in gravitational fields (1949) Rev. Mod. Phys., 21, p. 531
  • Kremer, G.M., (2010) An Introduction to the Boltzmann Equation and Transport Processes in Gases, , (Springer, New York)

Citas:

---------- APA ----------
Kremer, G.M., Richarte, M.G. & Weber, K. (2016) . Self-gravitating systems of ideal gases in the 1PN approximation. Physical Review D, 93(6).
http://dx.doi.org/10.1103/PhysRevD.93.064073
---------- CHICAGO ----------
Kremer, G.M., Richarte, M.G., Weber, K. "Self-gravitating systems of ideal gases in the 1PN approximation" . Physical Review D 93, no. 6 (2016).
http://dx.doi.org/10.1103/PhysRevD.93.064073
---------- MLA ----------
Kremer, G.M., Richarte, M.G., Weber, K. "Self-gravitating systems of ideal gases in the 1PN approximation" . Physical Review D, vol. 93, no. 6, 2016.
http://dx.doi.org/10.1103/PhysRevD.93.064073
---------- VANCOUVER ----------
Kremer, G.M., Richarte, M.G., Weber, K. Self-gravitating systems of ideal gases in the 1PN approximation. Phy. Rev. D. 2016;93(6).
http://dx.doi.org/10.1103/PhysRevD.93.064073