Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In type-II superconductors, the macroscopic response of vortex matter to an external perturbation depends on the local interaction of flux lines with the pinning landscape (pinscape). The (Campbell) penetration depth λC of an ac field perturbation is often associated with a phenomenological pinning curvature. However, this basic approach is unable to capture thermal hysteresis effects observed in a variety of superconductors. The recently developed framework of strong-pinning theory has established a quantitative relationship between the microscopic pinscape and macroscopic observables. Specifically, it identifies history-dependent vortex arrangements as the primary source for thermal hysteresis in the Campbell response. In this work, we show that this interpretation is well-suited to capture the experimental results of the clean superconductor NbSe2, as observed through Campbell response (linear ac susceptibility) and small-angle neutron scattering measurements. Furthermore, we exploit the hysteretic Campbell response upon thermal cycling to extract the temperature dependence of microscopic pinning parameters from bulk measurements, specifically the pinning force and pinning length. This spectroscopic tool may stimulate further pinscape characterization in other superconducting systems. © 2018 American Physical Society.

Registro:

Documento: Artículo
Título:Thermal hysteresis of the Campbell response as a probe for bulk pinning landscape spectroscopy
Autor:Willa, R.; Marziali Bermúdez, M.; Pasquini, G.
Filiación:Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, United States
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, 1428, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Física de Buenos Aires, Buenos Aires, 1428, Argentina
Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), UNLP-CONICET, La Plata, 1900, Argentina
Año:2018
Volumen:98
Número:18
DOI: http://dx.doi.org/10.1103/PhysRevB.98.184520
Título revista:Physical Review B
Título revista abreviado:Phys. Rev. B
ISSN:24699950
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699950_v98_n18_p_Willa

Referencias:

  • Blatter, G., Feigel'Man, M.V., Geshkenbein, V.B., Larkin, A.I., Vinokur, V.M., Vortices in high-temperature superconductors (1994) Rev. Mod. Phys., 66, p. 1125
  • Macmanus-Driscoll, J.L., Foltyn, S.R., Jia, Q.X., Wang, H., Serquis, A., Maiorov, B., Civale, L., Peterson, D.E., Systematic enhancement of in-field critical current density with rare-earth ion size variance in superconducting rare-earth barium cuprate films (2004) Appl. Phys. Lett., 84, p. 5329
  • Haugan, T., Barnes, P.N., Wheeler, R., Meisenkothen, F., Sumption, M., Addition of nanoparticle dispersions to enhance flux pinning of the (Equation presented) superconductor (2004) Nature (London), 430, p. 867
  • Kang, S., Goyal, A., Li, J., Gapud, A.A., Martin, P.M., Heatherly, L., Thompson, J.R., Lee, D.F., High-performance high-(Equation presented) superconducting wires (2006) Science, 311, p. 1911
  • Silhanek, A.V., Gillijns, W., Milošević, M.V., Volodin, A., Moshchalkov, V.V., Peeters, F.M., Optimization of superconducting critical parameters by tuning the size and magnetization of arrays of magnetic dots (2007) Phys. Rev. B, 76, p. 100502
  • Gutierrez, J., Llordes, A., Gazquez, J., Gibert, M., Roma, N., Pomar, A., Sandiumenge, F., Obradors, X., Strong isotropic flux pinning in solution-derived (Equation presented) nanocomposite superconductor films (2007) Nat. Mater., 6, p. 367
  • Maiorov, B., Baily, S.A., Zhou, H., Ugurlu, O., Kennison, J.A., Dowden, P.C., Holesinger, T.G., Civale, L., Synergetic combination of different types of defect to optimize pinning landscape using (Equation presented) (2009) Nat. Mater., 8, p. 398
  • Polat, O., Sinclair, J.W., Zuev, Y.L., Thompson, J.R., Christen, D.K., Cook, S.W., Kumar, D., Selvamanickam, V., Thickness dependence of magnetic relaxation and (Equation presented) characteristics in superconducting ((Equation presented) films with strong vortex pinning (2011) Phys. Rev. B, 84, p. 024519
  • Miura, M., Maiorov, B., Kato, T., Shimode, T., Wada, K., Adachi, S., Tanabe, K., Strongly enhanced flux pinning in one-step deposition of (Equation presented) superconductor films with uniformly dispersed (Equation presented) nanoparticles (2013) Nat. Commun., 4, p. 2499
  • Ray, D., Olson Reichhardt, C.J., Jankó, B., Reichhardt, C., Strongly Enhanced Pinning of Magnetic Vortices in Type-II Superconductors by Conformal Crystal Arrays (2013) Phys. Rev. Lett., 110, p. 267001
  • Kwok, W.-K., Welp, U., Glatz, A., Koshelev, A.E., Kihlstrom, K.J., Crabtree, G.W., Vortices in high-performance high-temperature superconductors (2016) Rep. Prog. Phys., 79, p. 116501
  • Sadovskyy, I.A., Jia, Y., Leroux, M., Kwon, J., Hu, H., Fang, L., Chaparro, C., Kwok, W.-K., Toward superconducting critical current by design (2016) Adv. Mater., 28, p. 4593
  • Le Thien, Q., McDermott, D., Reichhardt, C.J.O., Reichhardt, C., Enhanced pinning for vortices in hyperuniform pinning arrays and emergent hyperuniform vortex configurations with quenched disorder (2017) Phys. Rev. B, 96, p. 094516
  • Eley, S., Willa, R., Miura, M., Sato, M., Leroux, M., Henry, M.D., Civale, L., Accelerated vortex dynamics across the magnetic 3D-to-2D crossover in disordered superconductors (2018) Npj Quant. Mater., 3, p. 37
  • Labusch, R., Calculation of the critical field gradient in type-II superconductors (1969) Cryst. Latt. Def., 1, p. 1
  • Larkin, A.I., Ovchinnikov, Y.N., Pinning in type II superconductors (1979) J. Low Temp. Phys., 34, p. 409
  • Blatter, G., Geshkenbein, V.B., Koopmann, J.A.G., Weak to Strong Pinning Crossover (2004) Phys. Rev. Lett., 92, p. 067009
  • Thomann, A.U., Geshkenbein, V.B., Blatter, G., Dynamical Aspects of Strong Pinning of Magnetic Vortices in Type-II Superconductors (2012) Phys. Rev. Lett., 108, p. 217001
  • Thomann, A.U., Geshkenbein, V.B., Blatter, G., Vortex dynamics in type-II superconductors under strong pinning conditions (2017) Phys. Rev. B, 96, p. 144516
  • Buchacek, M., Willa, R., Geshkenbein, V.B., Blatter, G., Persistence of pinning and creep beyond critical drive within the strong pinning paradigm (2018) Phys. Rev. B, 98, p. 094510
  • Willa, R., Geshkenbein, V.B., Prozorov, R., Blatter, G., Campbell Response in Type-II Superconductors under Strong Pinning Conditions (2015) Phys. Rev. Lett., 115, p. 207001
  • Willa, R., Geshkenbein, V.B., Blatter, G., Campbell penetration in the critical state of type-II superconductors (2015) Phys. Rev. B, 92, p. 134501
  • Willa, R., Geshkenbein, V.B., Blatter, G., Probing the pinning landscape in type-II superconductors via Campbell penetration depth (2016) Phys. Rev. B, 93, p. 064515
  • Pasquini, G., Daroca, D.P., Chiliotte, C., Lozano, G.S., Bekeris, V., Ordered, Disordered, and Coexistent Stable Vortex Lattices in (Equation presented) Single Crystals (2008) Phys. Rev. Lett., 100, p. 247003
  • Pérez Daroca, D., Pasquini, G., Lozano, G.S., Bekeris, V., Dynamics of superconducting vortices driven by oscillatory forces in the plastic-flow regime (2011) Phys. Rev. B, 84, p. 012508
  • Marziali Bermúdez, M., Eskildsen, M.R., Bartkowiak, M., Nagy, G., Bekeris, V., Pasquini, G., Dynamic Reorganization of Vortex Matter into Partially Disordered Lattices (2015) Phys. Rev. Lett., 115, p. 067001
  • Marziali Bermúdez, M., Louden, E.R., Eskildsen, M.R., Dewhurst, C.D., Bekeris, V., Pasquini, G., Metastability and hysteretic vortex pinning near the order-disorder transition in (Equation presented): Interplay between plastic and elastic energy barriers (2017) Phys. Rev. B, 95, p. 104505
  • Guillamón Gómez, I., (2009) Ph.D. Thesis, , Orden y desorden en superconductividad, Universidad Autónoma de Madrid
  • Henderson, W., Andrei, E.Y., Higgins, M.J., Plastic Motion of a Vortex Lattice Driven by Alternating Current (1998) Phys. Rev. Lett., 81, p. 2352
  • Xiao, Z.L., Dogru, O., Andrei, E.Y., Shuk, P., Greenblatt, M., Observation of the Vortex Lattice Spinodal in (Equation presented) (2004) Phys. Rev. Lett., 92, p. 227004
  • Li, G., Andrei, E.Y., Xiao, Z.L., Shuk, P., Greenblatt, M., Onset of Motion and Dynamic Reordering of a Vortex Lattice (2006) Phys. Rev. Lett., 96, p. 017009
  • Yaron, U., Gammel, P.L., Huse, D.A., Kleiman, R.N., Oglesby, C.S., Bucher, E., Batlogg, B., Clausen, K.N., Structural evidence for a two-step process in the depinning of the superconducting flux-line lattice (1995) Nature (London), 376, p. 753
  • Hess, H.F., Robinson, R.B., Dynes, R.C., Valles, J.M., Waszczak, J.V., Scanning-Tunneling-Microscope Observation of the Abrikosov Flux Lattice and the Density of States Near and Inside a Fluxoid (1989) Phys. Rev. Lett., 62, p. 214
  • Raes, B., De Souza Silva, C.C., Silhanek, A.V., Cabral, L.R.E., Moshchalkov, V.V., Van De Vondel, J., Closer look at the low-frequency dynamics of vortex matter using scanning susceptibility microscopy (2014) Phys. Rev. B, 90, p. 134508
  • Timmermans, M., Samuely, T., Raes, B., Van De Vondel, J., Moshchalkov, V.V., Dynamic visualization of nanoscale vortex orbits (2014) ACS Nano, 8, p. 2782
  • Guillamon, I., Suderow, H., Guinea, F., Vieira, S., Intrinsic atomic-scale modulations of the superconducting gap of (Equation presented) (2008) Phys. Rev. B, 77, p. 134505
  • Galvis, J., Herrera, E., Guillamón, I., Vieira, S., Suderow, H., Vortex cores and vortex motion in superconductors with anisotropic Fermi surfaces (2017) Physica C, 533, p. 2
  • Embon, L., Anahory, Y., Suhov, A., Halbertal, D., Cuppens, J., Yakovenko, A., Uri, A., Zeldov, E., Probing dynamics and pinning of single vortices in superconductors at nanometer scales (2015) Sci. Rep., 5, p. 7598
  • Campbell, A.M., The response of pinned flux vortices to low-frequency fields (1969) J. Phys. C, 2, p. 1492
  • Campbell, A.M., The interaction distance between flux lines and pinning centres (1971) J. Phys. C, 4, p. 3186
  • Bean, C.P., Magnetization of Hard Superconductors (1962) Phys. Rev. Lett., 8, p. 250
  • Van Der Beek, C.J., Geshkenbein, V.B., Vinokur, V.M., Linear and nonlinear ac response in the superconducting mixed state (1993) Phys. Rev. B, 48, p. 3393
  • Brandt, E.H., Thin superconductors in a perpendicular magnetic ac field: General formulation and strip geometry (1994) Phys. Rev. B, 49, p. 9024
  • Valenzuela, S.O., Bekeris, V., Plasticity and Memory Effects in the Vortex Solid Phase of Twinned (Equation presented) Single Crystals (2000) Phys. Rev. Lett., 84, p. 4200
  • Stamopoulos, D., Pissas, M., Bondarenko, A., Possible reordering of vortex matter near the end point of the second peak line in the (Equation presented) compound (2002) Phys. Rev. B, 66, p. 214521
  • See Supplemental Material of Ref. [26]; Chandra Ganguli, S., Singh, H., Saraswat, G., Ganguly, R., Bagwe, V., Shirage, P., Thamizhavel, A., Raychaudhuri, P., Disordering of the vortex lattice through successive destruction of positional and orientational order in a weakly pinned (Equation presented) single crystal (2015) Sci. Rep., 5, p. 10613

Citas:

---------- APA ----------
Willa, R., Marziali Bermúdez, M. & Pasquini, G. (2018) . Thermal hysteresis of the Campbell response as a probe for bulk pinning landscape spectroscopy. Physical Review B, 98(18).
http://dx.doi.org/10.1103/PhysRevB.98.184520
---------- CHICAGO ----------
Willa, R., Marziali Bermúdez, M., Pasquini, G. "Thermal hysteresis of the Campbell response as a probe for bulk pinning landscape spectroscopy" . Physical Review B 98, no. 18 (2018).
http://dx.doi.org/10.1103/PhysRevB.98.184520
---------- MLA ----------
Willa, R., Marziali Bermúdez, M., Pasquini, G. "Thermal hysteresis of the Campbell response as a probe for bulk pinning landscape spectroscopy" . Physical Review B, vol. 98, no. 18, 2018.
http://dx.doi.org/10.1103/PhysRevB.98.184520
---------- VANCOUVER ----------
Willa, R., Marziali Bermúdez, M., Pasquini, G. Thermal hysteresis of the Campbell response as a probe for bulk pinning landscape spectroscopy. Phys. Rev. B. 2018;98(18).
http://dx.doi.org/10.1103/PhysRevB.98.184520