Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The characterization of quantum processes is a key tool in quantum information processing tasks for several reasons: on one hand, it allows one to acknowledge errors in the implementations of quantum algorithms; on the other, it allows one to characterize unknown processes occurring in nature. Bendersky, Pastawski, and Paz [A. Bendersky, F. Pastawski, and J. P. Paz, Phys. Rev. Lett. 100, 190403 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.190403; Phys. Rev. A 80, 032116 (2009)PLRAAN1050-294710.1103/PhysRevA.80.032116] introduced a method to selectively and efficiently measure any given coefficient from the matrix description of a quantum channel. However, this method heavily relies on the construction of maximal sets of mutually unbiased bases (MUBs), which are known to exist only when the dimension of the Hilbert space is the power of a prime number. In this article, we lift the requirement on the dimension by presenting two variations of the method that work on arbitrary finite dimensions: one uses tensor products of maximal sets of MUBs, and the other uses a dimensional cutoff of a higher prime power dimension. © 2018 American Physical Society.

Registro:

Documento: Artículo
Título:Selective and efficient quantum process tomography in arbitrary finite dimension
Autor:Perito, I.; Roncaglia, A.J.; Bendersky, A.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBA, CONICET, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, ICC, CONICET, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Quantum optics; Set theory; Finite dimensions; Mutually unbiased basis; Quantum algorithms; Quantum channel; Quantum process; Quantum process tomography; Quantum-information processing; Tensor products; Quantum efficiency
Año:2018
Volumen:98
Número:6
DOI: http://dx.doi.org/10.1103/PhysRevA.98.062303
Título revista:Physical Review A
Título revista abreviado:Phys. Rev. A
ISSN:24699926
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v98_n6_p_Perito

Referencias:

  • Bendersky, A., Pastawski, F., Paz, J.P., Selective and Efficient Estimation of Parameters for Quantum Process Tomography (2008) Phys. Rev. Lett., 100, p. 190403
  • Bendersky, A., Pastawski, F., Paz, J.P., Selective and efficient quantum process tomography (2009) Phys. Rev. A, 80, p. 032116
  • Nielsen, M.A., Chuang, I.L., (2004) Quantum Computation and Quantum Information, , 1st ed., Cambridge Series on Information and the Natural Sciences (Cambridge University, Cambridge, England)
  • Mohseni, M., Lidar, D.A., Direct Characterization of Quantum Dynamics (2006) Phys. Rev. Lett., 97, p. 170501
  • Mohseni, M., Rezakhani, A.T., Lidar, D.A., Quantum-process tomography: Resource analysis of different strategies (2008) Phys. Rev. A, 77, p. 032322
  • López, C.C., Bendersky, A., Paz, J.P., Cory, D.G., Progress toward scalable tomography of quantum maps using twirling-based methods and information hierarchies (2010) Phys. Rev. A, 81, p. 062113
  • Schmiegelow, C.T., Bendersky, A., Larotonda, M.A., Paz, J.P., Selective and Efficient Quantum Process Tomography without Ancilla (2011) Phys. Rev. Lett., 107, p. 100502
  • Emerson, J., Symmetrized characterization of noisy quantum processes (2007) Science, 317, p. 1893
  • Gaikwad, A., Rehal, D., Singh, A., Arvind, Dorai, K., Experimental demonstration of selective quantum process tomography on an NMR quantum information processor (2018) Phys. Rev. A, 97, p. 022311
  • Schwinger, J., Unitary operator bases (1960) Proc. Natl. Acad. Sci. USA, 46, p. 570
  • Ivanovic, I., Geometrical description of quantal state determination (1981) J. Phys. A: Math. Gen., 14, p. 3241
  • Wootters, W.K., Fields, B.D., Optimal state-determination by mutually unbiased measurements (1989) Ann. Phys., 191, p. 363
  • Durt, T., Englert, B.-G., Bengtsson, I., Zyczkowski, K., On mutually unbiased bases (2010) Int. J. Quantum Inf., 8, p. 535
  • Ambainis, A., Emerson, J., (2007) IEEE Conference on Computational Complexity'07, pp. 129-140. , Quantum t-designs: t-wise independence in the quantum world, in (IEEE, New York)
  • Klappenecker, A., Rotteler, M., (2005) Proceedings of the International Symposium on Information Theory, 2005, pp. 1740-1744. , Mutually unbiased bases are complex projective 2-designs, in (IEEE, New York)
  • Dankert, C., (2005) Efficient Simulation of Random Quantum States and Operators, , Master's thesis, University of Waterloo, Canada
  • Hoeffding, W., Probability inequalities for sums of bounded random variables (1963) J. Am. Stat. Assoc., 58, p. 13
  • Hardy, G.H., Ramanujan, S., The normal number of prime factors of a number (Equation presented) (1917) Quart. J. Math., 48, p. 76

Citas:

---------- APA ----------
Perito, I., Roncaglia, A.J. & Bendersky, A. (2018) . Selective and efficient quantum process tomography in arbitrary finite dimension. Physical Review A, 98(6).
http://dx.doi.org/10.1103/PhysRevA.98.062303
---------- CHICAGO ----------
Perito, I., Roncaglia, A.J., Bendersky, A. "Selective and efficient quantum process tomography in arbitrary finite dimension" . Physical Review A 98, no. 6 (2018).
http://dx.doi.org/10.1103/PhysRevA.98.062303
---------- MLA ----------
Perito, I., Roncaglia, A.J., Bendersky, A. "Selective and efficient quantum process tomography in arbitrary finite dimension" . Physical Review A, vol. 98, no. 6, 2018.
http://dx.doi.org/10.1103/PhysRevA.98.062303
---------- VANCOUVER ----------
Perito, I., Roncaglia, A.J., Bendersky, A. Selective and efficient quantum process tomography in arbitrary finite dimension. Phys. Rev. A. 2018;98(6).
http://dx.doi.org/10.1103/PhysRevA.98.062303