Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work, we analyze the incidence of the plates' thickness on the Casimir force and radiative heat transfer for a configuration of parallel plates in a nonequilibrium scenario, relating to Lifshitz's and Landauer's formulas. From a first-principles canonical quantization scheme for the study of the matter-field interaction, we give closed-form expressions for the nonequilibrium Casimir force and the heat transfer between plates of thicknesses dL,dR. We distinguish three different contributions to the Casimir force and the heat transfer in the general nonequilibrium situation: two associated with each of the plates and one to the initial state of the field. We analyze the dependence of the Casimir force and heat transfer with the plate thickness (setting dL=dR≡d), showing the scale at which each magnitude converges to the value of infinite thickness (d→+) and how to correctly reproduce the nonequilibrium Lifshitz's formula. For the heat transfer, we show that Landauer's formula does not apply to every case (where the three contributions are present), but it is correct for some specific situations. We also analyze the interplay of the different contributions for realistic experimental and nanotechnological conditions, showing the impact of the thickness in the measurements. For small thicknesses (compared to the separation distance), the plates act to decrease the background blackbody flux, while for large thicknesses the heat is given by the baths' contribution only. The combination of these behaviors allows for the possibility, on one hand, of having a tunable minimum in the heat transfer that is experimentally attainable and observable for metals and, on the other hand, of having vanishing heat flux in the gap when those difference are of opposite signs (thermal shielding). These features turns out to be relevant for nanotechnological applications. © 2018 American Physical Society.

Registro:

Documento: Artículo
Título:Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces
Autor:Rubio López, A.E.; Poggi, P.M.; Lombardo, F.C.; Giannini, V.
Filiación:Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Technikerstrasse 21a, Innsbruck, 6020, Austria
Institute for Theoretical Physics, University of Innsbruck, Innsbruck, A-6020, Austria
Departamento de Física Juan José Giambiagi, FCEyN UBA, IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina
Department of Physics, Condensed Matter Theory, Imperial College London, London, SW7 2AZ, United Kingdom
Instituto de Estructura de la Materia, IEM-CSIC, Madrid, E-28006, Spain
Palabras clave:Binary mixtures; Heat flux; Plates (structural components); Quantum theory; Radiative transfer; Canonical quantization; Closed-form expression; First principles; Non equilibrium; Parallel plates; Plate thickness; Radiative heat transfer; Separation distances; Heat transfer
Año:2018
Volumen:97
Número:4
DOI: http://dx.doi.org/10.1103/PhysRevA.97.042508
Título revista:Physical Review A
Título revista abreviado:Phys. Rev. A
ISSN:24699926
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v97_n4_p_RubioLopez

Referencias:

  • Milonni, P.W., (1994) The Quantum Vacuum: An Introduction to Quantum Electrodynamics, , (Academic Press, San Diego, CA)
  • Breuer, H.-P., Petruccione, F., (2002) The Theory of Open Quantum Systems, , (Oxford University Press, New York)
  • Capasso, F., Munday, J.N., Iannuzzi, D., Chan, H.B., (2007) IEEE J. Sel. Top. Quant., 13, p. 400
  • Bordag, M., Mohideen, U., Mostepanenko, V.M., (2001) Phys. Rep., 353, p. 1
  • Levin, M., McCauley, A.P., Rodriguez, A.W., Reid, M.T.H., Johnson, S.G., (2010) Phys. Rev. Lett., 105, p. 090403
  • Rodriguez, A.W., Capasso, F., Johnson, S.G., (2011) Nat. Photon., 5, p. 211
  • Gies, H., Langfeld, K., Moyaerts, L., J. High Energy Phys., 2003 (6), p. 018
  • Dalvit, D.A.R., Lombardo, F.C., Mazzitelli, F.D., Onofrio, R., (2004) Europhys. Letts., 67, p. 517
  • Mazzitelli, F.D., Dalvit, D.A.R., Lombardo, F.C., (2006) New J. Phys., 8, p. 240
  • Dalvit, D.A.R., Lombardo, F.C., Mazzitelli, F.D., Onofrio, R., (2006) Phys. Rev. A, 74, p. 020101
  • Wei, Q., Dalvit, D.A.R., Lombardo, F.C., Mazzitelli, F.D., Onofrio, R., (2010) Phys. Rev. A, 81, p. 052115
  • Lombardo, F.C., Mazzitelli, F.D., Villar, P.I., (2008) Phys. Rev. D, 78, p. 085009
  • Fosco, C.D., Lombardo, F.C., Mazzitelli, F.D., (2011) Phys. Rev. D, 84, p. 105031
  • Kardar, M., Golestanian, R., (1999) Rev. Mod. Phys., 71, p. 1233
  • Lamoreaux, S.K., (2005) Rep. Prog. Phys., 68, p. 201
  • Volokitin, A.I., Persson, B.N.J., (2007) Rev. Mod. Phys., 79, p. 1291
  • Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M., (2009) Rev. Mod. Phys., 81, p. 1827
  • Lombardo, F.C., Mazzitelli, F.D., Villar, P.I., Dalvit, D.A.R., (2010) Phys. Rev. A, 82, p. 042509
  • Intravaia, F., Lambrecht, A., (2005) Phys. Rev. Lett., 94, p. 110404
  • Pirozhenko, I., Lambrecht, A., (2009) Phys. Rev. A, 80, p. 042510
  • Luo, Y., Zhao, R., Pendry, J.B., (2014) P. Nath. Acad. Sci. USA, 111, p. 18422
  • Bimonte, G., Emig, T., Kardar, M., Krüger, M., (2017) Annu. Rev. Cond. Matt. Phys., 8, p. 119
  • Bordag, M., (unpublished); Lifshitz, E.M., (1956) Sov. Phys. JETP, 2, p. 73
  • Dzyaloshinskii, I.E., Lifshitz, E.M., Pitaevskii, L.P., (1961) Physics-Uspekhi, 4, p. 153
  • Lombardo, F.C., Mazzitelli, F.D., López, A.E.R., (2011) Phys. Rev. A, 84, p. 052517
  • Rubio López, A.E., (2017) Phys. Rev. D, 95, p. 025009
  • Antezza, M., Pitaevskii, L.P., Stringari, S., Svetovoy, V.B., (2008) Phys. Rev. A, 77, p. 022901
  • Behunin, R.O., Hu, B.-L., (2011) Phys. Rev. A, 84, p. 012902
  • Intravaia, F., Behunin, R.O., (2012) Phys. Rev. A, 86, p. 062517
  • Kruger, M., Bimonte, G., Emig, T., Kardar, M., (2012) Phys. Rev. B, 86, p. 115423
  • Ben-Abdallah, P., Joulain, K., (2010) Phys. Rev. B, 82, p. 121419. , (R)
  • Ben-Abdallah, P., Biehs, S.-A., Joulain, K., (2011) Phys. Rev. Lett., 107, p. 114301
  • Rubio López, A.E., Lombardo, F.C., (2015) Eur. Phys. J. C, 75, p. 93
  • Lombardo, F.C., Mazzitelli, F.D., Lopez, A.E.R., Turiaci, G.J., (2016) Phys. Rev. D, 94, p. 025029
  • Messina, R., Antezza, M., (2011) Phys. Rev. A, 84, p. 042102
  • Buhmann, S.Y., (2012) Dispersion Forces i, , (Springer-Verlag, Berlin)
  • Howell, J.R., Siegel, R., Mengüc, M.P., (2010) Thermal Radiation Heat Transfer, , (CRC Press, Taylor & Francis)
  • Landsberg, P.T., De Vos, A., (1989) J. Phys. A: Math. Gen., 22, p. 1073
  • Pérez-Madrid, A., Rubí, J.M., Lapas, L.C., (2017) J. Non-Equilibrium Thermodyn., 35, p. 279
  • Philbin, T.G., (2010) New J. Phys., 12, p. 123008
  • Barton, G., (2016) J. Stat. Phys., 165, p. 1153
  • Yu, R., Manjavacas, A., García De Abajo, F.J., (2017) Nat. Comm., 8, p. 2
  • Polder, D., Van Hove, M., (1971) Phys. Rev. B, 4, p. 3303
  • Ben-Abdallah, P., Joulain, K., Drevillon, J., Domingues, G., (2009) J. Appl. Phys., 106, p. 044306
  • Latella, I., Ben-Abdallah, P., Biehs, S.-A., Antezza, M., Messina, R., (2017) Phys. Rev. B, 95, p. 205404

Citas:

---------- APA ----------
Rubio López, A.E., Poggi, P.M., Lombardo, F.C. & Giannini, V. (2018) . Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces. Physical Review A, 97(4).
http://dx.doi.org/10.1103/PhysRevA.97.042508
---------- CHICAGO ----------
Rubio López, A.E., Poggi, P.M., Lombardo, F.C., Giannini, V. "Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces" . Physical Review A 97, no. 4 (2018).
http://dx.doi.org/10.1103/PhysRevA.97.042508
---------- MLA ----------
Rubio López, A.E., Poggi, P.M., Lombardo, F.C., Giannini, V. "Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces" . Physical Review A, vol. 97, no. 4, 2018.
http://dx.doi.org/10.1103/PhysRevA.97.042508
---------- VANCOUVER ----------
Rubio López, A.E., Poggi, P.M., Lombardo, F.C., Giannini, V. Landauer's formula breakdown for radiative heat transfer and nonequilibrium Casimir forces. Phys. Rev. A. 2018;97(4).
http://dx.doi.org/10.1103/PhysRevA.97.042508