Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We analyze the lowest achievable temperature for a mechanical oscillator coupled with a quantum refrigerator composed of a parametrically driven system that is in contact with a bosonic reservoir where the energy is dumped. We show that the cooling of the oscillator (achieved by the resonant transport of its phonon excitations into the environment) is always stopped by a fundamental heating process that is dominant at sufficiently low temperatures. This process can be described as the nonresonant production of excitation pairs. This result is in close analogy with the recent study that showed that pair production is responsible for enforcing the validity of the dynamical version of the third law of thermodynamics [Phys. Rev. E 95, 012146 (2017)2470-004510.1103/PhysRevE.95.012146]. Interestingly, we relate our model to the ones used to describe laser cooling of a single trapped ion reobtaining the correct limiting temperatures for the regimes of resolved and nonresolved sidebands. We show that the limiting temperature for laser cooling is achieved when the cooling transitions induced by the resonant transport of excitations from the motion into the electromagnetic environment is compensated by the heating transitions induced by the creation of phonon-photon pairs. © 2018 American Physical Society.

Registro:

Documento: Artículo
Título:Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process
Autor:Freitas, N.; Paz, J.P.
Filiación:Departamento de Física, FCEyN, UBA, Ciudad Universitaria, Pabellón 1, Buenos Aires, 1428, Argentina
Instituto de Física de Buenos Aires, UBA CONICET, Ciudad Universitaria, Pabellón 1, Buenos Aires, 1428, Argentina
Theoretische Physik, Universität des Saarlandes, Saarbrücken, D-66123, Germany
Palabras clave:Laser cooling; Oscillistors; Phonons; Photons; Temperature; Thermodynamics; Trapped ions; Cooling transitions; Electromagnetic environments; Limiting temperature; Mechanical oscillators; Phonon excitations; Quantum oscillators; Resonant transport; Thermodynamical process; Cooling
Año:2018
Volumen:97
Número:3
DOI: http://dx.doi.org/10.1103/PhysRevA.97.032104
Título revista:Physical Review A
Título revista abreviado:Phys. Rev. A
ISSN:24699926
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v97_n3_p_Freitas

Referencias:

  • Eschner, J., Morigi, G., Schmidt-Kaler, F., Blatt, R., Laser cooling of trapped ions (2003) J. Opt. Soc. Am. B, 20, p. 1003
  • O'Connell, A.D., Hofheinz, M., Ansmann, M., Bialczak, R.C., Lenander, M., Lucero, E., Neeley, M., Weides, M., Quantum ground state and single-phonon control of a mechanical resonator (2010) Nature (London), 464, p. 697
  • Teufel, J.D., Donner, T., Li, D., Harlow, J.W., Allman, M.S., Cicak, K., Sirois, A.J., Simmonds, R.W., Sideband cooling of micromechanical motion to the quantum ground state (2011) Nature (London), 475, p. 359
  • Vuletić, V., Chin, C., Kerman, A.J., Chu, S., Degenerate Raman Sideband Cooling of Trapped Cesium Atoms at Very High Atomic Densities (1998) Phys. Rev. Lett., 81, p. 5768
  • Wilson-Rae, I., Nooshi, N., Zwerger, W., Kippenberg, T.J., Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction (2007) Phys. Rev. Lett., 99, p. 093901
  • Marquardt, F., Chen, J.P., Clerk, A.A., Girvin, S.M., Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion (2007) Phys. Rev. Lett., 99, p. 093902
  • Allahverdyan, A.E., Hovhannisyan, K.V., Janzing, D., Mahler, G., Thermodynamic limits of dynamic cooling (2011) Phys. Rev. e, 84, p. 041109
  • Levy, A., Alicki, R., Kosloff, R., Quantum refrigerators and the third law of thermodynamics (2012) Phys. Rev. e, 85, p. 061126
  • Wu, L.-A., Segal, D., Brumer, P., No-go theorem for ground state cooling given initial system-thermal bath factorization (2013) Sci. Rep., 3, p. 1824
  • Ticozzi, F., Viola, L., Quantum resources for purification and cooling: Fundamental limits and opportunities (2014) Sci. Rep., 4, p. 5192
  • Masanes, L., Oppenheim, J., A general derivation and quantification of the third law of thermodynamics (2017) Nat. Commun., 8, p. 14538
  • Wilming, H., Gallego, R., Third Law of Thermodynamics as a Single Inequality (2017) Phys. Rev. X, 7, p. 041033
  • Freitas, N., Pablo Paz, J., Fundamental limits for cooling of linear quantum refrigerators (2017) Phys. Rev. e, 95, p. 012146
  • Benenti, G., Strini, G., Dynamical Casimir effect and minimal temperature in quantum thermodynamics (2015) Phys. Rev. A, 91, p. 020502
  • Kolář, M., Gelbwaser-Klimovsky, D., Alicki, R., Kurizki, G., Quantum Bath Refrigeration Towards Absolute Zero: Challenging the Unattainability Principle (2012) Phys. Rev. Lett., 109, p. 090601
  • Diedrich, F., Bergquist, J.C., Itano, W.M., Wineland, D.J., Laser Cooling to the Zero-Point Energy of Motion (1989) Phys. Rev. Lett., 62, p. 403
  • Hamann, S.E., Haycock, D.L., Klose, G., Pax, P.H., Deutsch, I.H., Jessen, P.S., Resolved-Sideband Raman Cooling to the Ground State of an Optical Lattice (1998) Phys. Rev. Lett., 80, p. 4149
  • Cirac, J.I., Blatt, R., Zoller, P., Phillips, W.D., Laser cooling of trapped ions in a standing wave (1992) Phys. Rev. A, 46, p. 2668
  • Birrell, N.D., Davies, P.C.W., (1984) Quantum Fields in Curved Space, , (Cambridge University Press, Cambridge, UK), 7
  • Mazzitelli, F.D., Paz, J.P., El Hasi, C., Reheating of the universe and evolution of the inflaton (1989) Phys. Rev. D, 40, p. 955
  • Dodonov, V.V., Current status of the dynamical Casimir effect (2010) Phys. Scr., 82, p. 038105
  • Birrell, N.D., Davies, P.C.W., Conformal-symmetry breaking and cosmological particle creation in (Equation presented) 4 theory (1980) Phys. Rev. D, 22, p. 322
  • Wilson, C.M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J.R., Duty, T., Nori, F., Delsing, P., Observation of the dynamical Casimir effect in a superconducting circuit (2011) Nature (London), 479, p. 376
  • Lähteenmäki, P., Paraoanu, G.S., Hassel, J., Hakonen, P.J., Dynamical Casimir effect in a Josephson metamaterial (2013) Proc. Natl. Acad. Sci. USA, 110, p. 4234
  • Chamon, C., Mucciolo, E.R., Arrachea, L., Capaz, R.B., Heat Pumping in Nanomechanical Systems (2011) Phys. Rev. Lett., 106, p. 135504
  • Arrachea, L., Mucciolo, E.R., Chamon, C., Capaz, R.B., Microscopic model of a phononic refrigerator (2012) Phys. Rev. B, 86, p. 125424
  • Leibfried, D., Roos, C., Barton, P., Rohde, H., Gulde, S., Mundt, A.B., Reymond, G., Eschner, J., (2001) AIP Conf. Proc., pp. 130-142. , Experiments towards quantum information with trapped calcium ions, AIP Conf. Proc. (AIP, New York), 551, pp
  • Roos, C., Zeiger, T., Rohde, H., Nägerl, H.C., Eschner, J., Leibfried, D., Schmidt-Kaler, F., Blatt, R., Quantum State Engineering on an Optical Transition and Decoherence in a Paul Trap (1999) Phys. Rev. Lett., 83, p. 4713
  • N. Freitas and J. Pablo Paz (unpublished)

Citas:

---------- APA ----------
Freitas, N. & Paz, J.P. (2018) . Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process. Physical Review A, 97(3).
http://dx.doi.org/10.1103/PhysRevA.97.032104
---------- CHICAGO ----------
Freitas, N., Paz, J.P. "Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process" . Physical Review A 97, no. 3 (2018).
http://dx.doi.org/10.1103/PhysRevA.97.032104
---------- MLA ----------
Freitas, N., Paz, J.P. "Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process" . Physical Review A, vol. 97, no. 3, 2018.
http://dx.doi.org/10.1103/PhysRevA.97.032104
---------- VANCOUVER ----------
Freitas, N., Paz, J.P. Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process. Phys. Rev. A. 2018;97(3).
http://dx.doi.org/10.1103/PhysRevA.97.032104