Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this paper we propose a nonperturbative approximation to electronic stopping power based on the central screened potential of a projectile moving in a free-electron gas, by Nagy and Apagyi [Phys. Rev. A 58, R1653 (1998)PLRAAN1050-294710.1103/PhysRevA.58.R1653]. We used this model to evaluate the energy loss of protons and antiprotons in ten solid targets: Cr, C, Ni, Be, Ti, Si, Al, Ge, Pb, Li, and Rb. They were chosen as canonicals because they have reliable Wigner-Seitz radius, rs=1.48 to 5.31, which cover most of the possible metallic solids. Present low-velocity results agree well with the experimental data for both proton and antiproton impact. Our formalism describes the binary collision of the projectile and one electron of the free-electron gas. It does not include the collective or plasmon excitations, which are important in the intermediate- and high-velocity regime. The distinguishing feature of this contribution is that by using the present model for low to intermediate energies and the Lindhard dielectric formalism for intermediate to high energies, we describe the stopping due to free-electron gas in an extensive energy range. Moreover, by adding the inner-shell contribution using the shellwise local plasma approximation, we are able to describe all the available experimental data in the low-, intermediate-, and high-energy regions. © 2017 American Physical Society.

Registro:

Documento: Artículo
Título:Low- and intermediate-energy stopping power of protons and antiprotons in solid targets
Autor:Montanari, C.C.; Miraglia, J.E.
Filiación:Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Astronomía y Física Del Espacio, Pabellón IAFE, Buenos Aires, 1428, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Electron gas; Energy dissipation; Germanium; Lead; Projectiles; Antiproton impact; Dielectric formalism; Electronic stopping power; Free electron gas; High energy regions; Intermediate energies; Plasmon excitations; Protons and antiprotons; Electrons
Año:2017
Volumen:96
Número:1
DOI: http://dx.doi.org/10.1103/PhysRevA.96.012707
Título revista:Physical Review A
Título revista abreviado:Phys. Rev. A
ISSN:24699926
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v96_n1_p_Montanari

Referencias:

  • Stopping Power of Matter for Ions, Graphs, Data, Comments and Programs, , https://www-nds.iaea.org/stopping/
  • Bethe, H., Zur Theorie des durchgangs schneller Korpuskularstrahlen durch materie (1930) Ann. Phys., 5, p. 325
  • Marques, M.A.L., Gross, E.K.U., Time-dependent density functional theory (2004) Annu. Rev. Phys. Chem., 55, p. 427
  • Quijada, M., Borisov, A.G., Nagy, I., Díez Muiño, R., Echenique, P.M., Time-dependent density-functional calculation of the stopping power for protons and antiprotons in metals (2007) Phys. Rev. A, 75, p. 042902
  • Shukri, A.A., Bruneval, F., Reining, L., Ab initio electronic stopping power of protons in bulk materials (2016) Phys. Rev. B, 93, p. 035128
  • Zeb, M.A., Kohanoff, J., Sánchez-Portal, D., Arnau, A., Juaristi, J.I., Artacho, E., Electronic Stopping Power in Gold: The Role of (Equation presented) Electrons and the H=He Anomaly (2012) Phys. Rev. Lett., 108, p. 225504
  • Lindhard, J., On the properties of a gas of charged particles (1954) Mat. Fys. Medd. Dan. Vid. Selsk, 28, p. 1
  • Lindhard, J., Winter, A., Stopping power of electron gas and equipartition rule (1964) Mat. Fys. Medd. Dan. Vid. Selsk, 34, p. 1
  • Lindhard, J., Scharff, M., Energy dissipation by ions in the kev region (1961) Phys. Rev., 124, p. 128
  • Abril, I., Garcia-Molina, R., Denton, C.D., Pérez-Pérez, F.J., Arista, N.R., Dielectric description of wakes and stopping powers in solids (1998) Phys. Rev. A, 58, p. 357
  • Montanari, C.C., Miraglia, J.E., The Dielectric Formalism for Inelastic Processes in High-Energy Ion Matter Collisions (2013) Advanced Quantum Chemistry, 65, pp. 165-201. , edited by Dz. Belkic (Elsevier, Amsterdam), Chap. 7
  • Montanari, C.C., Miraglia, J.E., Arista, N.R., Dynamics of solid inner-shell electrons in collisions with bare and dressed swift ions (2002) Phys. Rev. A, 66, p. 042902
  • Ferrell, T.L., Ritchie, R.H., Energy losses by slow ions and atoms to electronic excitation in solids (1977) Phys. Rev. B, 16, p. 115
  • Echenique, P.M., Flores, F., Ritchie, R.H., Dynamic screening of ions in matter (1990) Solid State Phys., 43, p. 229
  • Sigmund, P., Schinner, A., Binary stopping theory for swift heavy ions (2000) Eur. Phys. J. D, 12, p. 425
  • Schiwietz, G., Grande, P.L., A unitary convolution approximation for the impact-parameter dependent electronic energy loss (1999) Nucl. Instrum. Methods Phys. Res. B, 153, p. 1
  • Schiwietz, G., Grande, P.L., The unitary convolution approximation for heavy ions (2002) Nucl. Instrum. Methods Phys. Res. B, 195, p. 55
  • Arista, N.R., Energy loss of ions in solids: Non-linear calculations for slow and swift ions (2002) Nucl. Instrum. Methods Phys. Res. B, 195, p. 91
  • Bailey, J.J., Kadyrov, A.S., Abdurakhmanov, I.B., Fursa, D.V., Bray, I., Antiproton stopping in atomic targets (2015) Phys. Rev. A, 92, p. 022707
  • Ziegler, J.F., Ziegler, M.D., Biersack, J.P., SRIM: The stopping and range of ions in matter (2010) Nucl. Instrum. Methods Phys. Res. B, 268, p. 1818. , http://www.srim.org/, SRIM code
  • Fano, U., Penetration of protons, alpha particles, and mesons (1963) Annu. Rev. Nucl. Sci., 13, p. 1
  • Inokuti, M., Inelastic collisions of fast charged particles with atoms and molecules: The Bethe theory revisited (1971) Rev. Mod. Phys., 43, p. 297
  • Arista, N.R., Lifschitz, A.F., Non-linear approach to the energy loss of ions in solids (2004) Adv. Quantum Chem., 45, p. 47
  • Sigmund, P., Six decades of atomic collisions in solids (2017) Nucl. Instrum. Methods Phys. Res. B
  • Montanari, C.C., Dimitrou, P., The IAEA stopping power database, following the trends in stopping power of ions in matter (2017) Nucl. Instrum. Methods Phys. Res. B
  • Widmann, E., Plans for a next-generation low-energy antiproton facility (2005) Phys. Scr., 72, p. C51
  • Facility for Antiproton and Ion Research, , http://www.fair-center.eu/
  • Allison, J., Recent developments in Geant4 (2016) Nucl. Instrum. Methods Phys. Res. A, 835, p. 186
  • Barradas, N.P., Rauhala, E., (2009) Data Analysis Software for Ion Beam Analysis, Joint ICTP/IAEA Workshop on Advanced Simulation and Modelling for Ion Beam Analysis, , http://indico.ictp.it/event/a08139/session/4/contribution/3/material/0/1.pdf, (2015)
  • Wittmaack, K., On the origin of apparent Z1-oscillations in low-energy heavy-ion ranges (2016) Nucl. Instrum. Methods Phys. Res. B, 388, p. 15
  • Møller, S.P., Csete, A., Ichioka, T., Knudsen, H., Uggerhoj, U.I., Andersen, H.H., Stopping Power in Insulators and Metals without Charge Exchange (2004) Phys. Rev. Lett., 93, p. 042502
  • Møller, S.P., Csete, A., Ichioka, T., Knudsen, H., Uggerhøj, U.I., Andersen, H.H., Antiproton Stopping at Low Energies: Confirmation of Velocity-Proportional Stopping Power (2002) Phys. Rev. Lett., 88, p. 193201
  • Møller, S.P., Uggerhøj, E., Bluhme, H., Knudsen, H., Mikkelsen, U., Paludan, K., Morenzoni, E., Direct measurements of the stopping power for antiprotons of light and heavy targets (1997) Phys. Rev. A, 56, p. 2930
  • Valdes, J.E., Eckardt, J.C., Lantschner, G.H., Arista, N.R., Energy loss of slow protons in solids: Deviation from the proportionality with projectile velocity (1994) Phys. Rev. A, 49, p. 1083
  • Hobler, G., Bourdelle, K.K., Akatsu, T., Random and channeling stopping power of H in Si below 100 keV (2006) Nucl. Instrum. Methods Phys. Res. B, 242, p. 617
  • Fama, M., Lantschner, G.H., Eckardt, J.C., Arista, N.R., Gayone, J.E., Sanchez, E., Lovey, F., Energy loss and angular dispersion of 2200 keV protons in amorphous silicon (2002) Nucl. Instrum. Methods Phys. Res. B, 193, p. 91
  • Roth, D., Goebl, D., Primetzhofer, D., Bauer, P., A procedure to determine electronic energy loss from relative measurements with TOF-LEIS (2013) Nucl. Instrum. Methods Phys. Res. B, 317, p. 61
  • Primetzhofer, D., Rund, S., Roth, D., Goebl, D., Bauer, P., Electronic Excitations of Slow Ions in a Free Electron Gas Metal: Evidence for Charge Exchange Effects (2011) Phys. Rev. Lett., 107, p. 163201
  • Figueroa, E.A., Cantero, E.D., Eckardt, J.C., Lantschner, G.H., Valdés, J.E., Arista, N.R., Threshold effect in the energy loss of slow protons and deuterons channeled in Au crystals (2007) Phys. Rev. A, 75, p. 010901
  • Cantero, E.D., Lantschner, G.H., Eckardt, J.C., Arista, N.R., Velocity dependence of the energy loss of very slow proton and deuteron beams in Cu and Ag (2009) Phys. Rev. A, 80, p. 032904
  • Markin, S.N., Primetzhofer, D., Spitz, M., Bauer, P., Electronic stopping of low-energy H and He in Cu and Au investigated by time-of-flight low-energy ion scattering (2009) Phys. Rev. B, 80, p. 205105
  • Goebl, D., Khalal-Kouache, K., Roth, D., Steinbauer, E., Bauer, P., Energy loss of low-energy ions in transmission and backscattering experiments (2013) Phys. Rev. A, 88, p. 032901
  • Goebl, D., Roessler, W., Roth, D., Bauer, P., Influence of the excitation threshold of d electrons on electronic stopping of slow light ions (2014) Phys. Rev. A, 90, p. 042706
  • Celedon, C.E., Sanchez, E.A., Salazar Alarcon, L., Guimpel, J., Cortes, A., Vargas, P., Arista, N.R., Band structure effects in the energy loss of low-energy protons and deuterons in thin films of Pt (2015) Nucl. Instrum. Methods Phys. Res. B, 360, p. 103
  • Roth, D., Bruckner, B., Moro, M.V., Gruber, S., Goebl, D., Juaristi, J.I., Alducin, M., Bauer, P., Electronic Stopping of Slow Protons in Transition and Rare Earth Metals: Breakdown of the Free Electron Gas Concept (2017) Phys. Rev. Lett., 118, p. 103401
  • Echenique, P.M., Nieminen, R.M., Ritchie, R.H., Density functional calculation of stopping power of an electron gas for slow ions (1981) Solid State Commun., 37, p. 779
  • Zaremba, E., Arnau, A., Echenique, P.M., Nonlinear screening and stopping powers at finite projectile velocities (1995) Nucl. Instrum. Methods Phys. Res. B, 96, p. 619
  • Nagy, I., Apagyi, B., Scattering-theory formulation of stopping powers of a solid target for protons and antiprotons with velocity-dependent screening (1998) Phys. Rev. A, 58, p. R1653
  • Nagy, I., Bergara, A., A model for the velocity-dependent screening (1996) Nucl. Instrum. Methods Phys. Res. B, 115, p. 58
  • Nagy, I., Low-velocity antiproton stopping, A trial-potential approach (1994) Nucl. Instrum. Methods Phys. Res. B, 94, p. 377
  • Lifschitz, A.F., Arista, N.R., Electronic energy loss of helium ions in aluminum using the extended-sum-rule method (1998) Phys. Rev. A, 58, p. 2168
  • Fernández-Varea, J.M., Arista, N.R., Analytical formula for the stopping power of low-energy ions in a free-electron gas (2014) Radiat. Phys. Chem., 96, p. 88
  • Nersisyan, H.B., Fernández-Varea, J.M., Arista, N.R., Dynamic screening of an ion in a degenerate electron gas within the second-order Born approximation (2015) Nucl. Instrum. Methods Phys. Res. B, 354, p. 167
  • Cabrera-Trujillo, R., Öhrn, Y., Deumens, E., Sabin, J.R., Stopping cross section in the low- to intermediate-energy range: Study of proton and hydrogen atom collisions with atomic N, O, and F (2000) Phys. Rev. A, 62, p. 052714
  • Bailey, J.J., Kadyrov, A.S., Abdurakhmanov, I.B., Fursa, D.V., Bray, I., Antiproton stopping in (Equation presented) and (Equation presented) (2015) Phys. Rev. A, 92, p. 052711
  • Grande, P.L., Alternative treatment for the energy-transfer and transport cross section in dressed electron-ion binary collisions (2016) Phys. Rev. A, 94, p. 042704
  • Isaacson, D., (1975) Compilation of Rs Values, New York University Rept. No. 02698, , (National Auxiliary Publication Service, New York)
  • Singwi, K.S., Tosi, M.O., Land, R.H., Sjölander, A., Electron correlations at metallic densities (1968) Phys. Rev., 176, p. 589
  • Cantero, E.D., Fadanelli, R.C., Montanari, C.C., Behar, M., Eckardt, J.C., Lantschner, G.H., Miraglia, J.E., Arista, N.R., Experimental and theoretical study of the energy loss of Be and B ions in Zn (2009) Phys. Rev. A, 79, p. 042904
  • Montanari, C.C., Archubi, C.D., Mitnik, D.M., Miraglia, J.E., Energy loss of protons in Au, Pb, and Bi using relativistic wave functions (2009) Phys. Rev. A, 79, p. 032903
  • Nagy, I., Echenique, P.M., Stopping power of an electron gas for antiprotons at intermediate velocities (1993) Phys. Rev. A, 47, p. 3050
  • Montanari, C.C., Miraglia, J.E., Arista, N.R., Suppression of projectile-electron excitations in collisions with a free-electron gas of metals (2000) Phys. Rev. A, 62, p. 052902
  • Fermi, E., Teller, E., Capture of negative mesotrons in matter (1947) Phys. Rev., 72, p. 399
  • http://www.fair-center.eu/public/experiment-program/appa-physics/flair.html, http://www.flairatfair.eu/; Sigmund, P., (2006) Particle Penetration and Radiation Effects, General Aspects and Stopping of Swift Point Charges, 1. , (Springer-Verlag, Berlin)
  • Bunge, C.F., Barrientos, J.A., Bunge, A.V., Cogordan, J.A., Hartree-Fock and Roothaan-Hartree-Fock energies for the ground states of He through Xe (1992) Phys. Rev. A, 46, p. 3691
  • Limandri, S.P., Stopping cross sections of (Equation presented) for H and He ions (2014) Eur. Phys. J. D, 68, p. 194
  • Fadanelli, R.C., Nascimento, C.D., Montanari, C.C., Aguiar, J.C., Mitnik, D., Turos, A., Guziewicz, E., Behar, M., Stopping and straggling of H and He in ZnO (2016) Eur. Phys. J. D, 70, p. 178
  • Williams, G.P., (1986) Electron Binding Energies of the Elements, CRC Handbook of Chemistry and Physics, F170. , http://www.jlab.org/gwyn/ebindene.html, CRC, Boca Raton
  • Eppacher, Ch., Semrad, D., Dependence of proton and helium energy loss in solids upon plasma properties (1992) Nucl. Instrum. Methods Phys. Res. B, 69, p. 33
  • Warshaw, S.D., The stopping power for protons in several metals (1949) Phys. Rev., 76, p. 1759
  • Kahn, D., The energy loss of protons in metallic foils and mica (1953) Phys. Rev., 90, p. 503
  • Arkhipov, E.P., Gott, Y.V., Slowing down of 0.5-30 keV protons in some materials (1969) Sov. Phys. JETP, 29, p. 615
  • Ormrod, J.H., Electronic stopping cross sections of deutrons in titanium (1971) Nucl. Instrum. Methods, 95, p. 49
  • Abdesselam, M., Ouichaoui, S., Azzouz, M., Chami, A.C., Siad, M., Stopping of 0.3-1.2 MeV/u protons and alpha particles in Si (2008) Nucl. Instrum. Methods Phys. Res. B, 266, p. 3899
  • Konac, G., Kalbitzer, S., Klatt, C., Niemann, D., Stoll, R., Energy loss and straggling of H and He ions of keV energies in Si and C (1998) Nucl. Instrum. Methods Phys. Res. B, 136-138, p. 159
  • Archubi, C.D., Arista, N.R., A study of threshold effects in the energy loss of slow protons in semiconductors and insulators using dielectric and non-linear approaches (2016) Eur. Phys. J. B, 89, p. 86
  • Ullah, R., Corsetti, F., Sánchez-Portal, D., Artacho, E., Electronic stopping power in a narrow band gap semiconductor from first principles (2015) Phys. Rev. B, 91, p. 125203
  • Kaneko, T., Partial and total electronic stopping cross sections of atoms and solids for protons (1993) At. Data Nucl. Data Tables, 53, p. 271
  • Cabrera-Trujillo, R., Sabin, J.R., Deumens, E., Ohrn, Y., Cross sections for (Equation presented) and H atoms colliding with Li in the low-keV-energy region (2008) Phys. Rev. A, 78, p. 012707
  • Eppacher, C., Diez Muino, R., Semrad, D., Arnau, A., Stopping power of lithium for hydrogen projectiles (1995) Nucl. Instrum. Methods Phys. Res. B, 96, p. 639

Citas:

---------- APA ----------
Montanari, C.C. & Miraglia, J.E. (2017) . Low- and intermediate-energy stopping power of protons and antiprotons in solid targets. Physical Review A, 96(1).
http://dx.doi.org/10.1103/PhysRevA.96.012707
---------- CHICAGO ----------
Montanari, C.C., Miraglia, J.E. "Low- and intermediate-energy stopping power of protons and antiprotons in solid targets" . Physical Review A 96, no. 1 (2017).
http://dx.doi.org/10.1103/PhysRevA.96.012707
---------- MLA ----------
Montanari, C.C., Miraglia, J.E. "Low- and intermediate-energy stopping power of protons and antiprotons in solid targets" . Physical Review A, vol. 96, no. 1, 2017.
http://dx.doi.org/10.1103/PhysRevA.96.012707
---------- VANCOUVER ----------
Montanari, C.C., Miraglia, J.E. Low- and intermediate-energy stopping power of protons and antiprotons in solid targets. Phys. Rev. A. 2017;96(1).
http://dx.doi.org/10.1103/PhysRevA.96.012707