Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Quantum friction, the electromagnetic fluctuation-induced frictional force decelerating an atom which moves past a macroscopic dielectric body, has so far eluded experimental evidence despite more than three decades of theoretical studies. Inspired by the recent finding that dynamical corrections to such an atom's internal dynamics are enhanced by one order of magnitude for vertical motion - compared with the paradigmatic setup of parallel motion - we generalize quantum friction calculations to arbitrary angles between the atom's direction of motion and the surface in front of which it moves. Motivated by the disagreement between quantum friction calculations based on Markovian quantum master equations and time-dependent perturbation theory, we carry out our derivations of the quantum frictional force for arbitrary angles by employing both methods and compare them. © 2017 American Physical Society.

Registro:

Documento: Artículo
Título:Quantum friction in arbitrarily directed motion
Autor:Klatt, J.; Farías, M.B.; Dalvit, D.A.R.; Buhmann, S.Y.
Filiación:Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 4, Freiburg, D-79104, Germany
Departamento de Física, FCEyN, UBA, IFIBA, CONICET, Pabellón 1, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Theoretical Divison, MS B213, Los Alamos National Laboratory, Los Alamos, NM 87545, United States
Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstr. 19, Freiburg i. Br., D-79104, Germany
Año:2017
Volumen:95
Número:5
DOI: http://dx.doi.org/10.1103/PhysRevA.95.052510
Título revista:Physical Review A
Título revista abreviado:Phys. Rev. A
ISSN:24699926
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v95_n5_p_Klatt

Referencias:

  • Sukenik, C., Boshier, M., Cho, D., Sandoghdar, V., Hinds, E., Measurement of the Casimir-Polder Force (1993) Phys. Rev. Lett., 70, p. 560
  • Casimir, H.B.G., Polder, D., The influence of retardation on the London-van der Waals forces (1948) Phys. Rev., 73, p. 360
  • Ferrell, T., Ritchie, R., Dynamical and geometrical effects on the physisorption of atoms (1980) Phys. Rev. A, 21, p. 1305
  • Pendry, J.B., Shearing the vacuum-quantum friction (1997) J. Phys.: Condens. Matter, 9, p. 10301
  • Volokitin, A.I., Persson, B.N.J., Near-field radiative heat transfer and noncontact friction (2007) Rev. Mod. Phys., 79, p. 1291
  • Tomassone, M.S., Widom, A., Electronic friction forces on molecules moving near metals (1997) Phys. Rev. B, 56, p. 4938
  • Dedkov, G., Kyasov, A., Electromagnetic and fluctuation-electromagnetic forces of interactions of moving particles and nanoprobes with surfaces: A nonrelativistic consideration (2002) Phys. Solid State, 44, p. 1809
  • Scheel, S., Buhmann, S.Y., Casimir-Polder forces on moving atoms (2009) Phys. Rev. A, 80, p. 042902
  • Golyk, V.A., Krüger, M., Kardar, M., Linear response relations in fluctuational electrodynamics (2013) Phys. Rev. B, 88, p. 155117
  • Pieplow, G., Henkel, C., Fully covariant radiation force on a polarizable particle (2013) New J. Phys., 15, p. 023027
  • Intravaia, F., Behunin, R., Dalvit, D.A.R., Quantum friction and fluctuation theorems (2014) Phys. Rev. A, 89, p. 050101
  • Intravaia, F., Behunin, R., Henkel, C., Busch, K., Dalvit, D.A.R., Failure of Local Thermal Equilibrium in Quantum Friction (2016) Phys. Rev. Lett., 117, p. 100402
  • Farías, M.B., Lombardo, F.C., Dissipation and decoherence effects on a moving particle in front of a dielectric plate (2016) Phys. Rev. D, 93, p. 065035
  • Barton, G., On van der Waals friction. II: Between atom and half-space (2010) New J. Phys., 12, p. 113045
  • Barton, G., Van der Waals friction: A Hamiltonian testbed (2012) Int. J. Mod. Phys. Conf. Ser., 14, p. 16
  • Intravaia, F., Mkrtchian, V., Buhmann, S.Y., Scheel, S., Dalvit, D.A.R., Henkel, C., Friction forces on atoms after acceleration (2015) J. Phys.: Condens. Matter, 27, p. 214020
  • Volokitin, A.I., Persson, B.N.J., Theory of friction: The contribution from a fluctuating electromagnetic field (1999) J. Phys.: Condens. Matter, 11, p. 345
  • Volokitin, A.I., Persson, B.N.J., Quantum Friction (2011) Phys. Rev. Lett., 106, p. 094502
  • Gramila, T.J., Eisenstein, J.P., MacDonald, A.H., Pfeiffer, L.N., West, K.W., Mutual Friction between Parallel Two-Dimensional Electron Systems (1991) Phys. Rev. Lett., 66, p. 1216
  • Sivan, U., Solomon, P.M., Shtrikman, H., Coupled Electron-Hole Transport (1992) Phys. Rev. Lett., 68, p. 1196
  • Kim, S., Jo, I., Nah, J., Yao, Z., Banerjee, S.K., Tutuc, E., Coulomb drag of massless fermions in graphene (2011) Phys. Rev. B, 83, p. 161401
  • Gorbachev, R.V., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Tudorovskiy, T., Grigorieva, T.V., MacDonald, A.H., Ponamarenko, L.P., Coulomb drag of massless fermions in graphene (2012) Nat. Phys., 8, p. 896
  • Klatt, J., Bennett, R., Buhmann, S.Y., Spectroscopic signatures of quantum friction (2016) Phys. Rev. A, 94, p. 063803
  • Volokitin, A.I., Persson, B.N.J., Resonant Photon Tunneling Enhancement of the van der Waals Friction (2003) Phys. Rev. Lett., 91, p. 106101
  • Rytov, S., (1953) The Theory of Electrical Fluctuations and Thermal Radiation, USSR Academy of Science, Moscow, , (Academy of Sciences Press, Moscow)
  • Intravaia, F., Behunin, R., Henkel, C., Busch, K., Dalvit, D.A.R., Non-Markovianity in atom-surface dispersion forces (2016) Phys. Rev. A, 94, p. 042114
  • Huttner, B., Barnett, S.M., Quantization of the electromagnetic field in dielectrics (1992) Phys. Rev. A, 46, p. 4306
  • Philbin, T., Canonical quantization of macroscopic electromagnetism (2010) New J. Phys., 12, p. 123008
  • Buhmann, S.Y., (2013) Dispersion Forces I: Macroscopic Quantum Electrodynamics and Ground-State Casimir, Casimir-Polder and Van der Waals Forces, 247. , (Springer, Berlin, Heidelberg)
  • Lax, M., The Lax-Onsager regression theorem revisited (2000) Opt. Commun., 179, p. 463
  • Breuer, H.-P., Petruccione, F., (2002) The Theory of Open Quantum Systems, , (Oxford University Press on Demand)
  • Barton, G., Van der Waals shifts in an atom near absorptive dielectric mirrors (1997) Proc. R. Soc. London, Ser. A, 453, p. 2461
  • Farias, M.B., Fosco, C.D., Lombardo, F.C., Mazzitelli, F.D., Rubio Lopez, A.E., Functional approach to quantum friction: Effective action and dissipative force (2015) Phys. Rev. D, 91, p. 105020
  • Høye, J.S., Brevik, I., Friction force between moving harmonic oscillators (1992) Phys. A (Amsterdam, Neth.), 181, p. 413. , an
  • Høye, J.S., Brevik, I., Casimir friction force and energy dissipation for moving harmonic oscillators (2010) Europhys. Lett., 91, p. 60003. , an

Citas:

---------- APA ----------
Klatt, J., Farías, M.B., Dalvit, D.A.R. & Buhmann, S.Y. (2017) . Quantum friction in arbitrarily directed motion. Physical Review A, 95(5).
http://dx.doi.org/10.1103/PhysRevA.95.052510
---------- CHICAGO ----------
Klatt, J., Farías, M.B., Dalvit, D.A.R., Buhmann, S.Y. "Quantum friction in arbitrarily directed motion" . Physical Review A 95, no. 5 (2017).
http://dx.doi.org/10.1103/PhysRevA.95.052510
---------- MLA ----------
Klatt, J., Farías, M.B., Dalvit, D.A.R., Buhmann, S.Y. "Quantum friction in arbitrarily directed motion" . Physical Review A, vol. 95, no. 5, 2017.
http://dx.doi.org/10.1103/PhysRevA.95.052510
---------- VANCOUVER ----------
Klatt, J., Farías, M.B., Dalvit, D.A.R., Buhmann, S.Y. Quantum friction in arbitrarily directed motion. Phys. Rev. A. 2017;95(5).
http://dx.doi.org/10.1103/PhysRevA.95.052510