Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Helicity is a topological invariant that measures the linkage and knottedness of lines, tubes, and ribbons. As such, it has found myriads of applications in astrophysics, fluid dynamics, atmospheric sciences, and biology. In quantum flows, where topology-changing reconnection events are a staple, helicity appears as a key quantity to study. However, the usual definition of helicity is not well posed in quantum vortices, and its computation based on counting links and crossings of centerline vorticity can be downright impossible to apply in complex and turbulent scenarios. We present a definition of helicity which overcomes these problems and which gives the expected result in the large-scale limit. With it, we show that certain reconnection events can excite Kelvin waves and other complex motions of the centerline vorticity, which slowly deplete helicity as they interact nonlinearly, thus linking the theory of vortex knots with observations of quantum fluids. This process also results in the depletion of helicity in a fully turbulent quantum flow, in a way reminiscent of the decay of helicity in classical fluids. © 2016 American Physical Society.

Registro:

Documento: Artículo
Título:Helicity, topology, and Kelvin waves in reconnecting quantum knots
Autor:Clark di Leoni, P.; Mininni, P.D.; Brachet, M.E.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBA, CONICET, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Laboratoire de Physique Statistique, L'Ecole Normale Supérieure Associé, CNRS, Universités Paris 6 et 7, 24 Rue Lhomond, Paris Cedex 05, 75237, France
Palabras clave:Astrophysics; Computation theory; Gravity waves; Quantum chemistry; Topology; Vorticity; Atmospheric science; Classical fluids; Complex motion; Kelvin waves; Quantum fluids; Quantum knots; Quantum vortex; Topological invariants; Vortex flow
Año:2016
Volumen:94
Número:4
DOI: http://dx.doi.org/10.1103/PhysRevA.94.043605
Título revista:Physical Review A
Título revista abreviado:Phys. Rev. A
ISSN:24699926
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v94_n4_p_ClarkdiLeoni

Referencias:

  • Brandenburg, A., Subramanian, K., (2005) Phys. Rep., 417, p. 1
  • Rasmussen, E.N., Blanchard, D.O., (1998) Weather Forecasting, 13, p. 1148
  • Rorai, C., Rosenberg, D., Pouquet, A., Mininni, P.D., (2013) Phys. Rev. e, 87, p. 063007
  • Marino, R., Mininni, P.D., Rosenberg, D., Pouquet, A., (2013) Phys. Rev. e, 87, p. 033016
  • Moffatt, H.K., (1969) J. Fluid Mech., 35, p. 117
  • Moffatt, H.K., Ricca, R.L., (1992) Proc. R. Soc. London Ser. A, 439, p. 411
  • Dennis, M.R., Hannay, J.H., (2005) Proc. R. Soc. London Ser. A, 461, p. 3245
  • Ricca, R.L., Berger, M.A., (1996) Phys. Today, 49 (12), p. 28
  • Moffatt, H.K., (2014) Proc. Natl. Acad. Sci. USA, 111, p. 3663
  • Vologodskii, A.V., Crisona, N.J., Laurie, B., Pieranski, P., Katritch, V., Dubochet, J., Stasiak, A., (1998) J. Mol. Biol., 278, p. 1
  • Dennis, M.R., King, R.P., Jack, B., O'Holleran, K., Padgett, M.J., (2010) Nat. Phys., 6, p. 118
  • Kedia, H., Bialynicki-Birula, I., Peralta-Salas, D., Irvine, W.T.M., (2013) Phys. Rev. Lett., 111, p. 150404
  • Hussain, F., Duraisamy, K., (2011) Phys. Fluids, 23, p. 021701
  • Kleckner, D., Irvine, W.T.M., (2013) Nat. Phys., 9, p. 253
  • Bewley, G.P., Paoletti, M.S., Sreenivasan, K.R., Lathrop, D.P., (2008) Proc. Natl. Acad. Sci. USA, 105, p. 13707
  • Zuccher, S., Caliari, M., Baggaley, A.W., Barenghi, C.F., (2012) Phys. Fluids, 24, p. 125108
  • Rorai, C., Sreenivasan, K.R., Fisher, M.E., (2013) Phys. Rev. B, 88, p. 134522
  • Scheeler, M.W., Kleckner, D., Proment, D., Kindlmann, G.L., Irvine, W.T.M., (2014) Proc. Natl. Acad. Sci. USA, 111, p. 15350
  • Laing, C.E., Ricca, R.L., Sumners, D.W.L., (2015) Sci. Rep., 5, p. 9224
  • Zuccher, S., Ricca, R.L., (2015) Phys. Rev. e, 92, p. 061001
  • Kimura, Y., Moffatt, H.K., (2014) J. Fluid Mech., 751, p. 329
  • Hall, D.S., Ray, M.W., Tiurev, K., Ruokokoski, E., Gheorghe, A.H., Möttönen, M., (2016) Nat. Phys., 12, p. 478
  • Kleckner, D., Kauffman, L.H., Irvine, W.T.M., Nat. Phys. (unpublished); Fonda, E., Meichle, D.P., Ouellette, N.T., Hormoz, S., Lathrop, D.P., (2014) Proc. Natl. Acad. Sci. USA, 111, p. 4707
  • Thomson, W., (1880) Philos. Mag., 10, p. 155
  • Kozik, E., Svistunov, B., (2004) Phys. Rev. Lett., 92, p. 035301
  • L'Vov, V.S., Nazarenko, S., (2010) J. Exp. Theor. Phys. Lett., 91, p. 428
  • Clark di Leoni, P., Mininni, P.D., Brachet, M.E., (2015) Phys. Rev. A, 92, p. 063632
  • Nore, C., Abid, M., Brachet, M.E., (1997) Phys. Fluids, 9, p. 2644
  • Krstulovic, G., Brachet, M., (2011) Phys. Rev. e, 83, p. 066311
  • Lighthill, M.J., (1958) An Introduction to Fourier Analysis and Generalised Functions, , (Cambridge University Press, Cambridge)
  • Klenin, K., Langowski, J., (2000) Biopolymers, 54, p. 307
  • http://link.aps.org/supplemental/10.1103/PhysRevA.94.043605, See Supplemental Material at for videos showing the evolution of the trefoil and the two rings knots; Gómez, D.O., Mininni, P.D., Dmitruk, P., (2005) Adv. Space Res., 35, p. 899
  • Gómez, D.O., Mininni, P.D., Dmitruk, P., (2005) Phys. Scr., 2005, p. 123
  • Mininni, P., Rosenberg, D., Reddy, R., Pouquet, A., (2011) Parallel Comput., 37, p. 316
  • Berry, M.V., Dennis, M.R., (2012) Eur. J. Phys., 33, p. 723
  • Boué, L., Khomenko, D., L'Vov, V.S., Procaccia, I., (2013) Phys. Rev. Lett., 111, p. 145302
  • Di Leoni, P.C., Cobelli, P., Mininni, P., (2015) Eur. Phys. J. e, 38, p. 1
  • Vinen, W.F., Tsubota, M., Mitani, A., (2003) Phys. Rev. Lett., 91, p. 135301
  • Nemirovskii, S.K., Baltsevich, A.J., (2001) Quantized Vortex Dynamics and Superfluid Turbulence, pp. 219-225. , Lecture Notes in Physics No. 571, edited by C. F. Barenghi, R. J. Donnelly, and W. F. Vinen (Springer, Berlin)
  • Nemirovskii, S.K., (2013) Phys. Rep. Quantum Turbulence, 524, p. 85
  • Teitelbaum, T., Mininni, P.D., (2011) Phys. Fluids, 23, p. 065105

Citas:

---------- APA ----------
Clark di Leoni, P., Mininni, P.D. & Brachet, M.E. (2016) . Helicity, topology, and Kelvin waves in reconnecting quantum knots. Physical Review A, 94(4).
http://dx.doi.org/10.1103/PhysRevA.94.043605
---------- CHICAGO ----------
Clark di Leoni, P., Mininni, P.D., Brachet, M.E. "Helicity, topology, and Kelvin waves in reconnecting quantum knots" . Physical Review A 94, no. 4 (2016).
http://dx.doi.org/10.1103/PhysRevA.94.043605
---------- MLA ----------
Clark di Leoni, P., Mininni, P.D., Brachet, M.E. "Helicity, topology, and Kelvin waves in reconnecting quantum knots" . Physical Review A, vol. 94, no. 4, 2016.
http://dx.doi.org/10.1103/PhysRevA.94.043605
---------- VANCOUVER ----------
Clark di Leoni, P., Mininni, P.D., Brachet, M.E. Helicity, topology, and Kelvin waves in reconnecting quantum knots. Phys. Rev. A. 2016;94(4).
http://dx.doi.org/10.1103/PhysRevA.94.043605