Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present a numerical analysis of the particle creation for a quantum field in the presence of time-dependent boundary conditions. Having in mind recent experiments involving superconducting circuits, we consider their description in terms of a scalar field in a one-dimensional cavity satisfying generalized boundary conditions that involve a time-dependent linear combination of the field and its spatial and time derivatives. We evaluate numerically the Bogoliubov transformation between in- and out-states and find that the rate of particle production strongly depends on whether the spectrum of the unperturbed cavity is equidistant or not, and also on the amplitude of the temporal oscillations of the boundary conditions. We provide analytic justifications for the different regimes found numerically. © 2016 American Physical Society.

Registro:

Documento: Artículo
Título:Dynamical Casimir effect in superconducting circuits: A numerical approach
Autor:Lombardo, F.C.; Mazzitelli, F.D.; Soba, A.; Villar, P.I.
Filiación:Departamento de Física Juan José Giambiagi, FCEyN UBA, IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, Buenos Aires, 1428, Argentina
Centro Atómico Bariloche, Instituto Balseiro, Comisión Nacional de Energía Atómica, Bariloche, R8402AGP, Argentina
Centro de Simulación Computacional Para Aplicaciones Tecnológicas, CSC - CONICET Polo Científico y Tecnológico de Buenos Aires, Godoy Cruz, Buenos Aires, 2390, Argentina
Palabras clave:Reconfigurable hardware; Dynamical Casimir effect; Generalized boundary conditions; Numerical approaches; One-dimensional cavities; Particle production; Superconducting circuit; Temporal oscillations; Time-dependent boundary conditions; Boundary conditions
Año:2016
Volumen:93
Número:3
DOI: http://dx.doi.org/10.1103/PhysRevA.93.032501
Título revista:Physical Review A
Título revista abreviado:Phys. Rev. A
ISSN:24699926
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v93_n3_p_Lombardo

Referencias:

  • Moore, G.T., (1970) J. Math. Phys., 11, p. 2679
  • Dodonov, V.V., (2010) Phys. Scr., 82, p. 038105
  • Dalvit, D.A.R., Maia Neto, P.A., Mazzitelli, F.D., (2011) Lect. Notes Phys., 834, p. 419
  • Nation, P.D., Johansson, J.R., Blencowe, M.P., Nori, F., (2012) Rev. Mod. Phys., 84, p. 1
  • Dodonov, V.V., Klimov, A.B., (1996) Phys. Rev. A, 53, p. 2664
  • Lambrecht, A., Jaekel, M.T., Reynaud, S., (1996) Phys. Rev. Lett., 77, p. 615
  • Yablonovitch, E., (1989) Phys. Rev. Lett., 62, p. 1742
  • Agnesi, A., (2009) J. Phys.: Conf. Ser., 161, p. 012028
  • Belgiorno, F., Cacciatori, S.L., Ortenzi, G., Sala, V.G., Faccio, D., (2010) Phys. Rev. Lett., 104, p. 140403
  • Schutzhold, R., arXiv:1110.6064; Westerberg, N., Cacciatori, S., Belgiorno, F., Dalla Piazza, F., Faccio, D., (2014) New J. Phys., 16, p. 075003
  • Johansson, J.R., Johansson, G., Wilson, C.M., Nori, F., (2009) Phys. Rev. Lett., 103, p. 147003
  • Wilson, C.M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J.R., Duty, T., Nori, F., Delsing, P., (2011) Nature (London), 479, p. 376
  • Lähteenmäki, P., Paraoanu, G.S., Hassel, J., Hakonen, P.J., (2013) Proc. Nat. Acad. Sci. USA, 110, p. 4234
  • Fosco, C.D., Lombardo, F.C., Mazzitelli, F.D., (2013) Phys. Rev. D, 87, p. 105008
  • Silva, H.O., Farina, C., (2011) Phys. Rev. D, 84, p. 045003
  • Farina, C., Silva, H.O., Rego, A.L.C., Alves, D.T., (2012) Int. J. Mod. Phys. Conf. Ser., 14, p. 306
  • Doukas, J., Louko, J., (2015) Phys. Rev. D, 91, p. 044010
  • Rego, A.L.C., Silva, H.O., Alves, D.T., Farina, C., (2014) Phys. Rev. D, 90, p. 025003
  • Ruser, M., (2006) J. Phys. A, 39, p. 6711
  • Alves, D.T., Granhen, E.R., (2014) Comput. Phys. Commun., 185, p. 2101
  • Crocce, M., Dalvit, D.A.R., Mazzitelli, F.D., (2001) Phys. Rev. A, 64, p. 013808
  • Crocce, M., Dalvit, D.A.R., Mazzitelli, F.D., (2002) Phys. Rev. A, 66, p. 033811
  • Wustmann, W., Shumeiko, V., (2013) Phys. Rev. B, 87, p. 184501
  • Bender, C.M., Orszag, S.A., (1978) Advanced Mathematical Methods for Scientists and Engineers, , (McGraw-Hill, Inc., New York)
  • Dalvit, D.A.R., Mazzitelli, F.D., (1998) Phys. Rev. A, 57, p. 2113
  • Dalvit, D.A.R., Mazzitelli, F.D., (1999) Phys. Rev. A, 59, p. 3049

Citas:

---------- APA ----------
Lombardo, F.C., Mazzitelli, F.D., Soba, A. & Villar, P.I. (2016) . Dynamical Casimir effect in superconducting circuits: A numerical approach. Physical Review A, 93(3).
http://dx.doi.org/10.1103/PhysRevA.93.032501
---------- CHICAGO ----------
Lombardo, F.C., Mazzitelli, F.D., Soba, A., Villar, P.I. "Dynamical Casimir effect in superconducting circuits: A numerical approach" . Physical Review A 93, no. 3 (2016).
http://dx.doi.org/10.1103/PhysRevA.93.032501
---------- MLA ----------
Lombardo, F.C., Mazzitelli, F.D., Soba, A., Villar, P.I. "Dynamical Casimir effect in superconducting circuits: A numerical approach" . Physical Review A, vol. 93, no. 3, 2016.
http://dx.doi.org/10.1103/PhysRevA.93.032501
---------- VANCOUVER ----------
Lombardo, F.C., Mazzitelli, F.D., Soba, A., Villar, P.I. Dynamical Casimir effect in superconducting circuits: A numerical approach. Phys. Rev. A. 2016;93(3).
http://dx.doi.org/10.1103/PhysRevA.93.032501