Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The spectrally truncated, or finite dimensional, versions of several equations of inviscid flows display transient solutions which match their viscous counterparts, but which eventually lead to thermalized states in which energy is in equipartition between all modes. Recent advances in the study of the Burgers equation show that the thermalization process is triggered after the formation of sharp localized structures within the flow called "tygers." We show that the process of thermalization first takes place in well defined subdomains, before engulfing the whole space. Using spatio-temporal analysis on data from numerical simulations, we study propagation of tygers and find that they move at a well defined mean speed that can be obtained from energy conservation arguments. © 2018 American Physical Society.

Registro:

Documento: Artículo
Título:Dynamics of partially thermalized solutions of the Burgers equation
Autor:Clark Di Leoni, P.; Mininni, P.D.; Brachet, M.E.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBA, CONICET, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome, 00133, Italy
Laboratoire de Physique Statistique, École Normale Supérieure, PSL Research University, UPMC Univ Paris 06, Sorbonne Universités; Université Paris Diderot, Sorbonne Paris-Cité, CNRS, 24 Rue Lhomond, Paris, 75005, France
Palabras clave:Data flow analysis; Burgers equations; Finite dimensional; Inviscid flows; Localized structures; Spatiotemporal analysis; Thermalization; Thermalization process; Transient solutions; Partial differential equations
Año:2018
Volumen:3
Número:1
DOI: http://dx.doi.org/10.1103/PhysRevFluids.3.014603
Título revista:Physical Review Fluids
Título revista abreviado:Phys. Rev. Fluids
ISSN:2469990X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_2469990X_v3_n1_p_ClarkDiLeoni

Referencias:

  • Kraichnan, R.H., Chen, S., Is there a statistical mechanics of turbulence? (1989) Physica D, 37, p. 160
  • Lee, T.D., On some statistical properties of hydrodynamical and magneto-hydrodynamical fields (1952) Q. Appl. Math., 10, p. 69
  • Kraichnan, R.H., Inertial ranges in two-dimensional turbulence (1967) Phys. Fluids, 10, p. 1417
  • Ting, A.C., Matthaeus, W.H., Montgomery, D., Turbulent relaxation processes in magnetohydrodynamics (1986) Phys. Fluids, 29, p. 3261
  • Cichowlas, C., Bonaïti, P., Debbasch, F., Brachet, M., Effective Dissipation and Turbulence in Spectrally Truncated Euler Flows (2005) Phys. Rev. Lett., 95, p. 264502
  • Krstulovic, G., Mininni, P.D., Brachet, M.E., Pouquet, A., Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows (2009) Phys. Rev. e, 79, p. 056304
  • Krstulovic, G., Brachet, M.-E., Pouquet, A., Alfvén waves and ideal two-dimensional Galerkin truncated magnetohydrodynamics (2011) Phys. Rev. e, 84, p. 016410
  • Krstulovic, G., Cartes, C., Brachet, M., Tirapegui, E., Generation and characterization of absolute equilibrium of compressible flows (2009) Int. J. Bifurcation Chaos, 19, p. 3445
  • Krstulovic, G., Brachet, M., Energy cascade with small-scale thermalization, counterflow metastability, and anomalous velocity of vortex rings in Fourier-truncated Gross-Pitaevskii equation (2011) Phys. Rev. e, 83, p. 066311
  • Zhu, J.-Z., Isotropic polarization of compressible flows (2016) J. Fluid Mech., 787, p. 440
  • Zhu, J.-Z., Hammett, G.W., Gyrokinetic statistical absolute equilibrium and turbulence (2010) Phys. Plasmas, 17, p. 122307
  • Dmitruk, P., Mininni, P.D., Pouquet, A., Servidio, S., Matthaeus, W.H., Magnetic field reversals and long-time memory in conducting flows (2014) Phys. Rev. e, 90, p. 043010
  • Prasath, S.G.G., Fauve, S., Brachet, M., Dynamo action by turbulence in absolute equilibrium (2014) Europhys. Lett., 106, p. 29002
  • Teitelbaum, T., Mininni, P.D., Thermalization and free decay in surface quasigeostrophic flows (2012) Phys. Rev. e, 86, p. 016323
  • Ray, S.S., Frisch, U., Nazarenko, S., Matsumoto, T., Resonance phenomenon for the Galerkin-truncated Burgers and Euler equations (2011) Phys. Rev. e, 84, p. 016301
  • Lax, P.D., Levermore, C.D., The zero dispersion limit for the Korteweg-de Vries KdV equation (1979) Proc. Natl. Acad. Sci. USA, 76, p. 3602
  • Goodman, J., Lax, P.D., On dispersive difference schemes. i (1988) Commun. Pure Appl. Math., 41, p. 591
  • Hou, T.Y., Lax, P.D., Dispersive approximations in fluid dynamics (1991) Commun. Pure Appl. Math., 44, p. 1
  • Majda, A.J., Timofeyev, I., Remarkable statistical behavior for truncated Burgers Hopf dynamics (2000) Proc. Natl. Acad. Sci. USA, 97, p. 12413
  • Venkataraman, D., Ray, S.S., The onset of thermalization in finite-dimensional equations of hydrodynamics: Insights from the Burgers equation (2017) Proc. R. Soc. A, 473, p. 20160585
  • Feng, P., Zhang, J., Cao, S., Prants, S.V., Liu, Y., Thermalized solution of the Galerkin-truncated Burgers equation: From the birth of local structures to thermalization (2017) Commun. Nonlinear Sci. Numer. Simul., 45, p. 104
  • Bec, J., Khanin, K., Burgers turbulence (2007) Phys. Rep., 447, p. 1
  • Buzzicotti, M., Biferale, L., Frisch, U., Ray, S.S., Intermittency in fractal Fourier hydrodynamics: Lessons from the Burgers equation (2016) Phys. Rev. e, 93, p. 033109
  • Frisch, U., Matsumoto, T., Bec, J., Singularities of Euler flow? Not out of the blue! (2003) J. Stat. Phys., 113, p. 761
  • Gibbon, J.D., The three-dimensional Euler equations: Where do we stand? (2008) Physica D, 237, p. 1894
  • Clark Di Leoni, P., Cobelli, P.J., Mininni, P.D., Dmitruk, P., Matthaeus, W.H., Quantification of the strength of inertial waves in a rotating turbulent flow (2014) Phys. Fluids, 26, p. 035106
  • Clark Di Leoni, P., Mininni, P.D., Brachet, M.E., Helicity, topology, and Kelvin waves in reconnecting quantum knots (2016) Phys. Rev. A, 94, p. 043605

Citas:

---------- APA ----------
Clark Di Leoni, P., Mininni, P.D. & Brachet, M.E. (2018) . Dynamics of partially thermalized solutions of the Burgers equation. Physical Review Fluids, 3(1).
http://dx.doi.org/10.1103/PhysRevFluids.3.014603
---------- CHICAGO ----------
Clark Di Leoni, P., Mininni, P.D., Brachet, M.E. "Dynamics of partially thermalized solutions of the Burgers equation" . Physical Review Fluids 3, no. 1 (2018).
http://dx.doi.org/10.1103/PhysRevFluids.3.014603
---------- MLA ----------
Clark Di Leoni, P., Mininni, P.D., Brachet, M.E. "Dynamics of partially thermalized solutions of the Burgers equation" . Physical Review Fluids, vol. 3, no. 1, 2018.
http://dx.doi.org/10.1103/PhysRevFluids.3.014603
---------- VANCOUVER ----------
Clark Di Leoni, P., Mininni, P.D., Brachet, M.E. Dynamics of partially thermalized solutions of the Burgers equation. Phys. Rev. Fluids. 2018;3(1).
http://dx.doi.org/10.1103/PhysRevFluids.3.014603