Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A parametric study of the magnetic dipole behavior in resistive incompressible magnetohydrodynamics inside a rotating sphere is performed, using direct numerical simulations and considering Reynolds and Ekman numbers as controlling parameters. The tendency is to obtain geodynamolike magnetic dipole reversal regimes for sufficiently small Ekman and large Reynolds numbers. The typical dipole latitude obtained in the reversal regime is around 40-(with respect to the rotation axis of the sphere). A statistical analysis of waiting times between dipole reversals is also performed, obtaining a non-Poissonian distribution of waiting times, indicating long-term memory effects. We also report the presence of a 1/f frequency power spectrum in the magnetic dipole time series, which also shows a tendency to grow toward lower frequencies as the Ekman number is decreased. © 2018 American Physical Society.

Registro:

Documento: Artículo
Título:Magnetic structure, dipole reversals, and 1/f noise in resistive MHD spherical dynamos
Autor:Fontana, M.; Mininni, P.D.; Dmitruk, P.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
IFIBA, CONICET, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Magnetic structure; Reynolds number; Spheres; Controlling parameters; Ekman numbers; Incompressible magnetohydrodynamics; Long term memory; Lower frequencies; Magnetic dipole; Parametric study; Rotating spheres; Magnetohydrodynamics
Año:2018
Volumen:3
Número:12
DOI: http://dx.doi.org/10.1103/PhysRevFluids.3.123702
Título revista:Physical Review Fluids
Título revista abreviado:Phys. Rev. Fluids
ISSN:2469990X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_2469990X_v3_n12_p_Fontana

Referencias:

  • Glatzmaier, G.A., Roberts, P.H., A three-dimensional self-consistent computer simulation of a geomagnetic field reversal (1995) Nature (London), 377, p. 203
  • Monchaux, R., Berhanu, M., Aumaître, S., Chiffaudel, A., Daviaud, F., Dubrulle, B., Ravelet, F., Volk, R., The von Kármán sodium experiment: Turbulent dynamical dynamos (2009) Phys. Fluids, 21, p. 35108
  • Christensen, U.R., Aubert, J., Hulot, G., Conditions for Earth-like geodynamo models (2010) Earth Planet. Sci. Lett., 296, p. 487
  • Driscoll, P.E., Peter, E., Simulating 2 Ga of geodynamo history (2016) Geophys. Res. Lett., 43, p. 5680
  • Vecchio, A., Laurenza, M., Meduri, D., Carbone, V., Storini, M., The dynamics of the solar magnetic field: Polarity reversals, butterfly diagram, and quasi-biennial oscillations (2012) Astrophys. J., 749, p. 27
  • Laj, C., Channell, J.E.T., (2007) Treatise on Geophysics, pp. 373-416. , edited by G. Schubert (Elsevier, Amsterdam)
  • Amit, H., Leonhardt, R., Wicht, J., Polarity reversals from paleomagnetic observations and numerical dynamo simulations (2010) Space Sci. Rev., 155, p. 293
  • Nornberg, M.D., Spence, E.J., Kendrick, R.D., Jacobson, C.M., Forest, C.B., Intermittent Magnetic Field Excitation by a Turbulent Flow of Liquid Sodium (2006) Phys. Rev. Lett., 97, p. 044503
  • Verhille, G., Plihon, N., Bourgoin, M., Odier, P., Pinton, J.-F., Laboratory dynamo experiments (2010) Space Sci. Rev., 152, p. 543
  • Berhanu, M., Verhille, G., Boisson, J., Gallet, B., Gissinger, C., Fauve, S., Mordant, N., Pirat, C., Dynamo regimes and transitions in the VKS experiment (2010) Eur. Phys. J. B, 77, p. 459
  • Christensen, U., Olson, P., Glatzmaier, G.A., Numerical modeling of the geodynamo: A systematic parameter study (1999) Geophys. J. Int., 138, p. 393
  • Rotvig, J., Jones, C.A., Rotating convection-driven dynamos at low Ekman number (2002) Phys. Rev. e, 66, p. 056308
  • Morin, V., Dormy, E., The dynamo bifurcation in rotating spherical shells (2009) Int. J. Mod. Phys. B, 23, p. 5467
  • Reuter, K., Jenko, F., Forest, C.B., Hysteresis cycle in a turbulent, spherically bounded MHD dynamo model (2009) New J. Phys., 11, p. 013027
  • Mininni, P., Dmitruk, P., Odier, P., Pinton, J.-F., Plihon, N., Verhille, G., Volk, R., Bourgoin, M., Long-term memory in experiments and numerical simulations of hydrodynamic and magnetohydrodynamic turbulence (2014) Phys. Rev. e, 89, p. 053005
  • Carbone, V., Sorriso-Valvo, L., Vecchio, A., Lepreti, F., Veltri, P., Harabaglia, P., Guerra, I., Clustering of Polarity Reversals of the Geomagnetic Field (2006) Phys. Rev. Lett., 96, p. 128501
  • Dmitruk, P., Matthaeus, W.H., Low-frequency (Equation presented) fluctuations in hydrodynamic and magnetohydrodynamic turbulence (2007) Phys. Rev. e, 76, p. 036305
  • De La Torre, A., Burguete, J., Slow Dynamics in a Turbulent von Kármán Swirling Flow (2007) Phys. Rev. Lett., 99, p. 054101
  • Dmitruk, P., Mininni, P.D., Pouquet, A., Servidio, S., Matthaeus, W.H., Emergence of very long time fluctuations and (Equation presented) noise in ideal flows (2011) Phys. Rev. e, 83, p. 066318
  • Dmitruk, P., Mininni, P.D., Pouquet, A., Servidio, S., Matthaeus, W.H., Magnetic field reversals and long-time memory in conducting flows (2014) Phys. Rev. e, 90, p. 043010
  • Constable, C., Johnson, C., A paleomagnetic power spectrum (2005) Phys. Earth Planet. In., 153, p. 61
  • Ziegler, L.B., Constable, C.G., Asymmetry in growth and decay of the geomagnetic dipole (2011) Earth Planet. Sci. Lett., 312, p. 300
  • Jones, C.A., Boronski, P., Brun, A.S., Glatzmaier, G.A., Gastine, T., Miesch, M.S., Wicht, J., Anelastic convection-driven dynamo benchmarks (2011) Icarus, 216, p. 120
  • Matsui, H., Performance benchmarks for a next generation numerical dynamo model (2016) Geochem. Geophys. Geosyst., 17, p. 1586
  • Schaeffer, N., Jault, D., Nataf, H.-C., Fournier, A., Turbulent geodynamo simulations: A leap towards earth's core (2017) Geophys. J. Int., 211, p. 1
  • Mininni, P.D., Montgomery, D.C., Magnetohydrodynamic activity inside a sphere (2006) Phys. Fluids, 18, p. 116602
  • Mininni, P.D., Montgomery, D.C., Turner, L., Hydrodynamic and magnetohydrodynamic computations inside a rotating sphere (2007) New J. Phys., 9, p. 303
  • Yoshida, Z., Giga, Y., Remarks on spectra of operator rot (1990) Math. Z., 204, p. 235
  • Parker, E.N., The generation of magnetic fields in astrophysical bodies. I. the dynamo equations (1970) Astrophys. J., 162, p. 665
  • Pouquet, A., Frisch, U., Léorat, J., Strong MHD helical turbulence and the nonlinear dynamo effect (1976) J. Fluid Mech., 77, p. 321
  • Ponty, Y., Mininni, P.D., Montgomery, D.C., Pinton, J.-F., Politano, H., Pouquet, A., Numerical Study of Dynamo Action at Low Magnetic Prandtl Numbers (2005) Phys. Rev. Lett., 94, p. 164502
  • Gubbins, D., Numerical solutions of the kinematic dynamo problem (1973) Philos. Trans. R. Soc. Ser. A, 274, p. 493
  • Léorat, J., Pouquet, A., Frisch, U., Fully developed MHD turbulence near critical magnetic Reynolds number (1981) J. Fluid Mech., 104, p. 419
  • Roberts, P.H., King, E.M., On the genesis of the Earth's magnetism (2013) Rep. Prog. Phys., 76, p. 096801
  • Besse, J., Courtillot, V., Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr (2002) J. Geophys. Res., 107, p. EPM. , 6-1
  • Ponty, Y., Politano, H., Pinton, J.F., Simulation of Induction at Low Magnetic Prandtl Number (2004) Phys. Rev. Lett., 92, p. 144503
  • Leonhardt, R., Fabian, K., Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification (2007) Earth Planet. Sci. Lett., 253, p. 172
  • Olson, P.L., Glatzmaier, G.A., Coe, R.S., Complex polarity reversals in a geodynamo model (2011) Earth Planet. Sci. Lett., 304, p. 168
  • Cande, S.C., Kent, D.V., Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic (1995) J. Geophys. Res., 100, p. 6093
  • Montroll, E.W., Shlesinger, M.F., On (Equation presented) noise and other distributions with long tails (1982) Proc. Natl. Acad. Sci. USA, 79, p. 3380
  • Dutta, P., Horn, P.M., Low-frequency fluctuations in solids: (Equation presented) noise (1981) Rev. Mod. Phys., 53, p. 497
  • Welch, P., The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms (1967) IEEE Trans. Audio Electroacoust., 15, p. 70

Citas:

---------- APA ----------
Fontana, M., Mininni, P.D. & Dmitruk, P. (2018) . Magnetic structure, dipole reversals, and 1/f noise in resistive MHD spherical dynamos. Physical Review Fluids, 3(12).
http://dx.doi.org/10.1103/PhysRevFluids.3.123702
---------- CHICAGO ----------
Fontana, M., Mininni, P.D., Dmitruk, P. "Magnetic structure, dipole reversals, and 1/f noise in resistive MHD spherical dynamos" . Physical Review Fluids 3, no. 12 (2018).
http://dx.doi.org/10.1103/PhysRevFluids.3.123702
---------- MLA ----------
Fontana, M., Mininni, P.D., Dmitruk, P. "Magnetic structure, dipole reversals, and 1/f noise in resistive MHD spherical dynamos" . Physical Review Fluids, vol. 3, no. 12, 2018.
http://dx.doi.org/10.1103/PhysRevFluids.3.123702
---------- VANCOUVER ----------
Fontana, M., Mininni, P.D., Dmitruk, P. Magnetic structure, dipole reversals, and 1/f noise in resistive MHD spherical dynamos. Phys. Rev. Fluids. 2018;3(12).
http://dx.doi.org/10.1103/PhysRevFluids.3.123702