Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Birdsong emerges when a set of highly interconnected brain areas manage to generate a complex output. This consists of precise respiratory rhythms as well as motor instructions to control the vocal organ configuration. In this way, during birdsong production, dedicated cortical areas interact with life-supporting ones in the brainstem, such as the respiratory nuclei. We discuss an integrative view of this interaction together with a widely accepted "top-down" representation of the song system. We also show that a description of this neural network in terms of dynamical systems allows to explore songbird production and processing by generating testable predictions. © 2017 Elsevier Ltd.

Registro:

Documento: Artículo
Título:From perception to action in songbird production: Dynamics of a whole loop
Autor:Amador, A.; Boari, S.; Mindlin, G.B.
Filiación:Department of Physics, FCEyN, University of Buenos Aires, IFIBA Conicet, Int. Guiraldes 2160, Pab. 1, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Birdsong; Dynamical systems; Sensorimotor integration; nervous system; nonhuman; perception; prediction; sensorimotor integration; songbird
Año:2017
Volumen:3
Página de inicio:30
Página de fin:35
DOI: http://dx.doi.org/10.1016/j.coisb.2017.03.004
Título revista:Current Opinion in Systems Biology
Título revista abreviado:Curr. Opin. Syst.
ISSN:24523100
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24523100_v3_n_p30_Amador

Referencias:

  • Brainard, M.S., Doupe, A.J., Translating birdsong: songbirds as a model for basic and applied medical research (2013) Annu. Rev. Neurosci., 36, pp. 489-517
  • Margoliash, D., Preference for autogenous song by auditory neurons in a song system nucleus of the white-crowned sparrow (1986) J. Neurosci., 6, pp. 1643-1661
  • Yu, A.C., Margoliash, D., Temporal hierarchical control of singing in birds (1996) Science, 273, pp. 1871-1875
  • McCasland, J.S., Konishi, M., Interaction between auditory and motor activities in an avian song control nucleus (1981) Proc. Natl. Acad. Sci. U. S. A., 78, pp. 7815-7819
  • Prather, J.F., Peters, S., Nowicki, S., Mooney, R., Precise auditory-vocal mirroring in neurons for learned vocal communication (2008) Nature, 451, pp. 305-310
  • Dave, A.S., Margoliash, D., Song replay during sleep and computational rules for sensorimotor vocal learning (2000) Science, 290, pp. 812-816
  • Solis, M.M., Doupe, A.J., Contributions of tutor and bird's own song experience to neural selectivity in the songbird anterior forebrain (1999) J. Neurosci., 19, pp. 4559-4584
  • Doupe, A.J., Konishi, M., Song-selective auditory circuits in the vocal control system of the zebra finch (1991) Proc. Natl. Acad. Sci. U. S. A., 88, pp. 11339-11343
  • Doupe, A.J., Song- and order-selective neurons in the songbird anterior forebrain and their emergence during vocal development (1997) J. Neurosci., 17, pp. 1147-1167
  • Solis, M.M., Doupe, A.J., Anterior forebrain neurons develop selectivity by an intermediate stage of birdsong learning (1997) J. Neurosci., 17, pp. 6447-6462
  • Nick, T.A., Konishi, M., Neural auditory selectivity develops in parallel with song (2005) J. Neurobiol., 62, pp. 469-481
  • Solis, M.M., Doupe, A.J., Compromised neural selectivity for song in birds with impaired sensorimotor learning (2000) Neuron, 25, pp. 109-121
  • Roy, A., Mooney, R., Auditory plasticity in a basal ganglia-forebrain pathway during decrystallization of adult birdsong (2007) J. Neurosci., 27, pp. 6374-6387
  • Mooney, R., Auditory-vocal mirroring in songbirds (2014) Philos. Trans. R. Soc. Lond B Biol. Sci., 369, p. 20130179
  • Nottebohm, F., Stokes, T.M., Leonard, C.M., Central control of song in the canary, Serinus canarius (1976) J. Comp. Neurol., 165, pp. 457-486
  • Vu, E.T., Mazurek, M.E., Kuo, Y.C., Identification of a forebrain motor programming network for the learned song of zebra finches (1994) J. Neurosci., 14, pp. 6924-6934
  • Mooney, R., Different subthreshold mechanisms underlie song selectivity in identified HVc neurons of the zebra finch (2000) J. Neurosci., 20, pp. 5420-5436
  • Hahnloser, R.H.R., Kozhevnikov, A.A., Fee, M.S., An ultra-sparse code underlies the generation of neural sequences in a songbird (2002) Nature, 419, pp. 65-70
  • Fee, M.S., Kozhevnikov, A.A., Hahnloser, R.H.R., Neural mechanisms of vocal sequence generation in the songbird (2004) Behav. Neurobiol. Birdsong, 1016, pp. 153-170
  • Long, M.A., Fee, M.S., Using temperature to analyse temporal dynamics in the songbird motor pathway (2008) Nature, 456, pp. 189-194
  • Wild, J.M., Functional neuroanatomy of the sensorimotor control of singing (2004) Behav. Neurobiol. Birdsong, 1016, pp. 438-462
  • Williams, H., Vicario, D.S., Temporal patterning of song production: participation of nucleus uvaeformis of the thalamus (1993) J. Neurobiol., 24, pp. 903-912
  • Hahnloser, R.H.R., Wang, C.Z.H., Nager, A., Naie, K., Spikes and bursts in two types of thalamic projection neurons differentially shape sleep patterns and auditory responses in a songbird (2008) J. Neurosci., 28, pp. 5040-5052
  • Coleman, M.J., Vu, E.T., Recovery of impaired songs following unilateral but not bilateral lesions of nucleus uvaeformis of adult zebra finches (2005) J. Neurobiol., 63, pp. 70-89
  • Ashmore, R.C., Wild, J.M., Schmidt, M.F., Brainstem and forebrain contributions to the generation of learned motor behaviors for song (2005) J. Neurosci., 25, pp. 8543-8554
  • Ashmore, R.C., Renk, J.A., Schmidt, M.F., Bottom-up activation of the vocal motor forebrain by the respiratory brainstem (2008) J. Neurosci., 28, pp. 2613-2623
  • Schmidt, M.F., Wild, J.M., The respiratory-vocal system of songbirds: anatomy, physiology, and neural control (2014) Prog. Brain Res., 212, p. 297
  • Schmidt, M.F., Pattern of interhemispheric synchronization in HVc during singing correlates with key transitions in the song pattern (2003) J. Neurophysiol., 90, pp. 3931-3949
  • Schmidt, M.F., Goller, F., Breathtaking songs: coordinating the neural circuits for breathing and singing (2016) Physiology (Bethesda), 31, pp. 442-451
  • Hamaguchi, K., Tanaka, M., Mooney, R., A distributed recurrent network contributes to temporally precise vocalizations (2016) Neuron, 91, pp. 680-693
  • Goldin, M.A., Alonso, L.M., Alliende, J.A., Goller, F., Mindlin, G.B., Temperature induced syllable breaking unveils nonlinearly interacting timescales in birdsong motor pathway (2013) PLoS One, 8
  • Suthers, R.A., Contributions to birdsong from the left and right sides of the intact syrinx (1990) Nature, 347, pp. 473-477
  • Goller, F., Suthers, R.A., Implications for lateralization of bird song from unilateral gating of bilateral motor patterns (1995) Nature, 373, pp. 63-66
  • Suthers, R.A., Goller, F., Pytte, C., The neuromuscular control of birdsong (1999) Philosophical Trans. R. Soc. Lond. Ser. B-Biological Sci., 354, pp. 927-939
  • Goller, F., Suthers, R.A., Role of syringeal muscles in controlling the phonology of bird song (1996) J. Neurophysiol., 76, pp. 287-300
  • Goller, F., Suthers, R.A., Role of syringeal muscles in gating airflow and sound production in singing brown thrashers (1996) J. Neurophysiol., 75, pp. 867-876
  • Goller, F., Cooper, B.G., Peripheral motor dynamics of song production in the zebra finch (2004) Behav. Neurobiol. Birdsong, 1016, pp. 130-152
  • Alonso, L.M., Alliende, J.A., Goller, F., Mindlin, G.B., Low-dimensional dynamical model for the diversity of pressure patterns used in canary song (2009) Phys. Rev. E, 79, p. 41929
  • Roulet, J., Mindlin, G.B., Average activity of excitatory and inhibitory neural populations (2016) Chaos, 26, p. 093104
  • Alonso, R.G., Trevisan, M.A., Amador, A., Goller, F., Mindlin, G.B., A circular model for song motor control in Serinus canaria (2015) Front. Comput. Neurosci., 9
  • Trevisan, M.A., Mindlin, G.B., Goller, F., Nonlinear model predicts diverse respiratory patterns of birdsong (2006) Phys. Rev. Lett., 96, p. 58103
  • Amador, A., Mindlin, G.B., Low dimensional dynamics in birdsong production (2014) Eur. Phys. J. B, 87, pp. 1-8
  • Hoppensteadt, F.C., Izhikevich, E.M., (1997) Weakly Connected Neural Networks, , Springer
  • Alliende, J.A., Mendez, J.M., Goller, F., Mindlin, G.B., Hormonal acceleration of song development illuminates motor control mechanism in canaries (2010) Dev. Neurobiol., 70, pp. 943-960
  • Perl, Y.S., Arneodo, E.M., Amador, A., Goller, F., Mindlin, G.B., Reconstruction of physiological instructions from zebra finch song (2011) Phys. Rev. E, 84, p. 051909
  • Amador, A., Sanz Perl, Y., Mindlin, G.B., Margoliash, D., Elemental gesture dynamics are encoded by song premotor cortical neurons (2013) Nature, 495, pp. 59-64
  • Alonso, R.G., Amador, A., Mindlin, G.B., An integrated model for motor control of song in Serinus canaria (2016) J. Physiol. Paris

Citas:

---------- APA ----------
Amador, A., Boari, S. & Mindlin, G.B. (2017) . From perception to action in songbird production: Dynamics of a whole loop. Current Opinion in Systems Biology, 3, 30-35.
http://dx.doi.org/10.1016/j.coisb.2017.03.004
---------- CHICAGO ----------
Amador, A., Boari, S., Mindlin, G.B. "From perception to action in songbird production: Dynamics of a whole loop" . Current Opinion in Systems Biology 3 (2017) : 30-35.
http://dx.doi.org/10.1016/j.coisb.2017.03.004
---------- MLA ----------
Amador, A., Boari, S., Mindlin, G.B. "From perception to action in songbird production: Dynamics of a whole loop" . Current Opinion in Systems Biology, vol. 3, 2017, pp. 30-35.
http://dx.doi.org/10.1016/j.coisb.2017.03.004
---------- VANCOUVER ----------
Amador, A., Boari, S., Mindlin, G.B. From perception to action in songbird production: Dynamics of a whole loop. Curr. Opin. Syst. 2017;3:30-35.
http://dx.doi.org/10.1016/j.coisb.2017.03.004