Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work, we show that the interfacial adhesion between carbon fibers (CFs) and epoxy matrix in laminated composites can be significantly enhanced by the chemical vapor deposition (CVD) growth of multiwalled carbon nanotubes (MWCNTs) onto the fiber surfaces at low temperatures. The key process parameter was the deposition of catalytic nickel nanoparticles (NPs) onto the CFs at room temperature by a low energy double target DC sputtering system. This protocol enabled the growth of CNTs without any detrimental effect on the fiber properties, and enhanced effectively the adhesion between fibers and matrix. Fractographic investigations of single fiber/epoxy composites demonstrated an improved interfacial adhesion between the ‘hierarchical’ fibers (CF-CNT) with the epoxy matrix as compared to the bare carbon fibers. The developed protocol is versatile and it is envisioned to be easily scaled-up for volume production of CF-CNT, giving rise to high mechanical performance structural composites. © 2017 Elsevier Ltd

Registro:

Documento: Artículo
Título:Carbon nanotubes grown on carbon fiber yarns by a low temperature CVD method: A significant enhancement of the interfacial adhesion between carbon fiber/epoxy matrix hierarchical composites
Autor:Felisberto, M.; Tzounis, L.; Sacco, L.; Stamm, M.; Candal, R.; Rubiolo, G.H.; Goyanes, S.
Filiación:LP&MC – Nanomaterials Research Group, Department of Physics, FCEyN-UBA and IFIBA-CONICET. Ciudad Universitaria, Buenos Aires, 1428, Argentina
Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, Dresden, 01069, Germany
INQUIMAE-CONICET. Ciudad Universitaria 1428, Buenos Aires, Argentina and Escuela de Ciencia and Tecnologia, UNSAM Campus Miguelete, San Martín, Bs. As., Argentina
Department of Materials (GIDAT-CAC), Comisión Nacional de Energia Atómica, San Martín, 1499, Argentina
Palabras clave:Carbon fiber reinforced composites; Carbon nanotubes; Chemical vapor deposition; Fiber/matrix bond
Año:2017
Volumen:3
Página de inicio:33
Página de fin:37
DOI: http://dx.doi.org/10.1016/j.coco.2017.01.003
Título revista:Composites Communications
Título revista abreviado:Compos. Commun.
ISSN:24522139
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24522139_v3_n_p33_Felisberto

Referencias:

  • Yancey, R., (2012) Aircraft designers turning to simulation to avert delamination issues, , http://www.eetimes.com/author.asp?Section_id=81&doc_id=1285887, EE Times
  • Ostrower, J., (2012) Delamination prompts boeing to inspect 787 fleet, , http://www.flightglobal.com/news/articles/delamination-prompts-boeing-to-inspect-787-fleet-367793/, Flightglobal
  • Khan, S.U., Kim, J.-K., Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers (2012) Carbon N. Y, 50, pp. 5265-5277
  • Blanco, J., Garcia, E.J., Guzman de Villoria, R., Wardle, B.L., Limiting mechanisms of mode i interlaminar toughening of composites reinforced with aligned carbon nanotubes (2009) J. Compos. Mater., 43, pp. 825-841
  • Tzounis, L., Debnath, S., Rooj, S., Fischer, D., Mäder, E., Das, A., Stamm, M., Heinrich, G., High performance natural rubber composites with a hierarchical reinforcement structure of carbon nanotube modified natural fibers (2014) Mater. Des., 58, pp. 1-11
  • Tzounis, L., Kirsten, M., Simon, F., Mäder, E., Stamm, M., The interphase microstructure and electrical properties of glass fibers covalently and non-covalently bonded with multiwall carbon nanotubes (2014) Carbon N. Y, 73, pp. 310-324
  • Tzounis, L., Liebscher, M., Tzounis, A., Petinakis, S., Paipetis, A.S., Mäder, E., Stamm, M., CNT-grafted glass fibers as a smart tool for the epoxy cure monitoring, UV-sensing and thermal energy harvesting in model composites (2016) RSC Adv., pp. 55514-55525
  • Tzounis, L., Liebscher, M., Maeder, E., Potschke, P., Stamm, M., Logothetidis, S., Thermal energy harvesting for large-scale applications using MWCNT-grafted glass fibers and polycarbonate-MWCNT nanocomposites (2015) Int. Conf. Exhib. Nanotechnol. Org. Electron., 1646, pp. 138-148
  • Wang, Y., Meng, L., Fan, L., Ma, L., Qi, M., Yu, J., Huang, Y., Enhanced interfacial properties of carbon fiber composites via aryl diazonium reaction “on water,” (2014) Appl. Surf. Sci., 316, pp. 366-372
  • Ma, L., Meng, L., Wu, G., Wang, Y., Zhao, M., Zhang, C., Huang, Y., Improving the interfacial properties of carbon fiber-reinforced epoxy composites by grafting of branched polyethyleneimine on carbon fiber surface in supercritical methanol (2015) Compos. Sci. Technol., 114, pp. 64-71
  • Gabr, M.H., Okumura, W., Ueda, H., Kuriyama, W., Uzawa, K., Kimpara, I., Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay (2015) Compos. Part B Eng., 69, pp. 94-100
  • Qin, W., Vautard, F., Drzal, L.T., Yu, J., Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber–matrix interphase (2015) Compos. Part B Eng., 69, pp. 335-341
  • Zhang, J., Deng, S., Wang, Y., Ye, L., Zhou, L., Zhang, Z., Effect of nanoparticles on interfacial properties of carbon fibre-epoxy composites (2013) Compos. Part A Appl. Sci. Manuf., 55, pp. 35-44
  • Wang, S., Downes, R., Young, C., Haldane, D., Hao, A., Liang, R., Wang, B., Maskell, R., Carbon Fiber/Carbon Nanotube Buckypaper Interply Hybrid Composites: manufacturing Process and Tensile Properties (2015) Adv. Eng. Mater., 17, pp. 1442-1453
  • Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren, Z.F., Chou, T.W., Carbon nanotube/carbon fiber hybrid multiscale composites (2002) J. Appl. Phys., 91, p. 6034
  • Boroujeni, A.Y., Tehrani, M., Nelson, A.J., Al-Haik, M., Hybrid carbon nanotube-carbon fiber composites with improved in-plane mechanical properties (2014) Compos. Part B Eng., 66, pp. 475-483
  • Qian, H., Bismarck, A., Greenhalgh, E.S., Shaffer, M.S.P., Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation (2010) Compos. Part A Appl. Sci. Manuf., 41, pp. 1107-1114
  • An, F., Lu, C., Guo, J., He, S., Lu, H., Yang, Y., Preparation of vertically aligned carbon nanotube arrays grown onto carbon fiber fabric and evaluating its wettability on effect of composite (2011) Appl. Surf. Sci., 258, pp. 1069-1076
  • Felisberto, M., Sacco, L., Mondragon, I., Rubiolo, G.H., Candal, R.J., Goyanes, S., The growth of carbon nanotubes on large areas of silicon substrate using commercial iron oxide nanoparticles as a catalyst (2010) Mater. Lett., 64, pp. 2188-2190
  • Morales, S.G.N., Felisberto, M., Sacco, L., Rubiolo, G.H., Candal, R.J., Synthesis of Carbon Nanotubes by Chemical Vapor Deposition on Iron Nanoparticles Synthesized from Oxide Precursors (2012) Carbon Nanotub. Synth. Prop., p. 413. , Ajay Kumar Mishra Nova Science Publishers New York
  • de Resende, V.G., Antunes, E.F., De Oliveira Lobo, A., Oliveira, D.A.L., Trava-Airoldi, V.J., Corat, E.J., Growth of carbon nanotube forests on carbon fibers with an amorphous silicon interface (2010) Carbon N. Y., 48, pp. 3655-3658
  • Park, O.-K., Chae, H.-S., Park, G.Y., You, N.-H., Lee, S., Bang, Y.H., Hui, D., Lee, J.H., Effects of functional group of carbon nanotubes on mechanical properties of carbon fibers (2015) Compos. Part B Eng., 76, pp. 159-166
  • Wu, G., Ma, L., Liu, L., Wang, Y., Xie, F., Zhong, Z., Zhao, M., Huang, Y., Interfacially reinforced methylphenylsilicone resin composites by chemically grafting multiwall carbon nanotubes onto carbon fibers (2015) Compos. Part B Eng., 82, pp. 50-58
  • Jian, X., Jiang, M., Zhou, Z., Yang, M., Lu, J., Hu, S., Wang, Y., Hui, D., Preparation of high purity helical carbon nanofibers by the catalytic decomposition of acetylene and their growth mechanism (2010) Carbon N. Y., 48, pp. 4535-4541
  • Jian, X., Jiang, M., Zhou, Z., Zeng, Q., Lu, J., Wang, D., Zhu, J., Yang, M., Gas-induced formation of Cu nanoparticle as catalyst for high-purity straight and helical carbon nanofibers (2012) ACS Nano, 6, pp. 8611-8619
  • Tang, N., Yang, Y., Lin, K., Zhong, W., Au, C., Du, Y., Synthesis of plait-like carbon nanocoils in ultrahigh yield, and their microwave absorption properties (2008) J. Phys. Chem. C, 112, pp. 10061-10067
  • Tang, N., Wen, J., Zhang, Y., Liu, F., Lin, K., Du, Y., Helical carbon nanotubes: catalytic particle size-dependent growth and magnetic properties (2010) ACS Nano, 4, pp. 241-250
  • Magrez, A., Seo, J.W., Smajda, R., Mionić, M., Forró, L., Catalytic CVD synthesis of carbon nanotubes: towards high yield and low temperature growth (2010) Materials Basel, 3, pp. 4871-4891
  • De Greef, N., Zhang, L., Magrez, A., Forró, L., Locquet, J.P., Verpoest, I., Seo, J.W., Direct growth of carbon nanotubes on carbon fibers: effect of the CVD parameters on the degradation of mechanical properties of carbon fibers (2015) Diam. Relat. Mater., 51, pp. 39-48
  • Du, X., Xu, F., Liu, H.-Y., Miao, Y., Guo, W.-G., Mai, Y.-W., Improving the electrical conductivity and interface properties of carbon fiber/epoxy composites by low temperature flame growth of carbon nanotubes (2016) RSC Adv., 6, pp. 48896-48904
  • Felisberto, M., Sacco, L., Rubiolo, G.H., Goyanes, S., Eceiza, A., Kortaberria, G., Mondragon, I., (2012) Method for Depositing Metal Nanoparticles by Means of Physical Vapour Deposition and Method for Generating Areas of Roughness, , WO2014/020217 A1
  • Pozegic, T.R., Hamerton, I., Anguita, J.V., Tang, W., Ballocchi, P., Jenkins, P., Silva, S.R.P., Low temperature growth of carbon nanotubes on carbon fibre to create a highly networked fuzzy fibre reinforced composite with superior electrical conductivity (2014) Carbon N. Y., 74, pp. 319-328
  • Marshall, D.B., Cox, B.N., Evans, A.G., The mechanics of matrix cracking brittle-matrix fiber composites (1985) Acta Met., 33, pp. 2013-2021
  • Li, Q., Church, J.S., Naebe, M., Fox, B.L., Interfacial characterization and reinforcing mechanism of novel carbon nanotube – Carbon fibre hybrid composites (2016) Carbon N. Y., 109, pp. 74-86
  • DiFrancia, C., Ward, T.C., Claus, R.O., The single-fibre pull-out test. 1: review and interpretation (1996) Compos. Part A Appl. Sci. Manuf., 27, pp. 597-612
  • Kichhannagari, S., Effects of extreme low temperature on composite materials (2004), University of New Orleans; Xu, F., Du, X.-S., Liu, H.-Y., Guo, W.-G., Mai, Y.-W., Temperature effect on nano-rubber toughening in epoxy and epoxy/carbon fiber laminated composites (2016) Compos. Part B Eng., 95, pp. 423-432

Citas:

---------- APA ----------
Felisberto, M., Tzounis, L., Sacco, L., Stamm, M., Candal, R., Rubiolo, G.H. & Goyanes, S. (2017) . Carbon nanotubes grown on carbon fiber yarns by a low temperature CVD method: A significant enhancement of the interfacial adhesion between carbon fiber/epoxy matrix hierarchical composites. Composites Communications, 3, 33-37.
http://dx.doi.org/10.1016/j.coco.2017.01.003
---------- CHICAGO ----------
Felisberto, M., Tzounis, L., Sacco, L., Stamm, M., Candal, R., Rubiolo, G.H., et al. "Carbon nanotubes grown on carbon fiber yarns by a low temperature CVD method: A significant enhancement of the interfacial adhesion between carbon fiber/epoxy matrix hierarchical composites" . Composites Communications 3 (2017) : 33-37.
http://dx.doi.org/10.1016/j.coco.2017.01.003
---------- MLA ----------
Felisberto, M., Tzounis, L., Sacco, L., Stamm, M., Candal, R., Rubiolo, G.H., et al. "Carbon nanotubes grown on carbon fiber yarns by a low temperature CVD method: A significant enhancement of the interfacial adhesion between carbon fiber/epoxy matrix hierarchical composites" . Composites Communications, vol. 3, 2017, pp. 33-37.
http://dx.doi.org/10.1016/j.coco.2017.01.003
---------- VANCOUVER ----------
Felisberto, M., Tzounis, L., Sacco, L., Stamm, M., Candal, R., Rubiolo, G.H., et al. Carbon nanotubes grown on carbon fiber yarns by a low temperature CVD method: A significant enhancement of the interfacial adhesion between carbon fiber/epoxy matrix hierarchical composites. Compos. Commun. 2017;3:33-37.
http://dx.doi.org/10.1016/j.coco.2017.01.003