Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The reusability, non-volatility and non-corrosiveness of ionic liquids (ILs), as well as their ease of isolation and a large electrochemical stability window, make them an interesting choice as environmentally friendly electrolytes for metal/air batteries. ILs have been described as designer solvents as their properties and behaviour can be adjusted to suit an individual reaction need. In the framework of this study we applied a conceptually similar design approach and showed that a simple parameter such as the concentration of a Li + dopant dramatically affects the reaction yields of Li/O 2 based energy storage devices. We studied the effect of Li + concentration from 0.1 to 1 M in a LiTFSI:PYR 14 TFSI ionic liquid electrolyte on the kinetics of the oxygen reduction reaction (ORR) and on the formation rate of different Li-O species at two different temperatures, finding that the discharge capacity, rates and product distribution change in a non-linear way. At 60 °C, the highest rates and up to one order of magnitude larger capacities were observed at intermediate LiTFSI concentrations, implying a complete mechanism switch from surface to volume phase mediation for Li 2 O 2 precipitation. At room temperature the same evolution was observed, even if in this case the surface mediation remained predominant at all concentrations. These results suggest the possibility to optimise the ionic liquid based Li/O 2 battery performances in terms of discharge capacity and lithium use, by tuning the temperature and alkali cation concentration. © The Royal Society of Chemistry 2018.

Registro:

Documento: Artículo
Título:Tailoring oxygen redox reactions in ionic liquid based Li/O 2 batteries by means of the Li + dopant concentration
Autor:Cecchetto, L.; Tesio, A.Y.; Olivares-Marín, M.; Espinasa, M.G.; Croce, F.; Tonti, D.
Filiación:Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus UAB, Bellaterra Barcelona, ES 08193, Spain
INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón 2, Buenos Aires, AR-1428, Argentina
MATGAS Campus UAB, Bellaterra Barcelona, ES 08193, Spain
Dipartimento di Farmacia, Università d'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti, 66100, Italy
Departamento de Ingeniería Mecánica, Energética y de Los Materiales, Universidad de Extremadura, Centro Universitario de Mérida, Merida, 06800, Spain
Palabras clave:Electric batteries; Electrolytes; Electrolytic reduction; Ionic liquids; Lithium batteries; Oxygen; Reaction rates; Redox reactions; Reusability; Battery performance; Discharge capacities; Dopant concentrations; Electrochemical stabilities; Ionic liquid electrolytes; Oxygen redox reactions; Oxygen reduction reaction; Product distributions; Lithium compounds; concentration (composition); design; electrolyte; energy storage; equipment component; ionic liquid; lithium; oxide group; oxygen; precipitation (chemistry); reaction kinetics; redox conditions
Año:2018
Volumen:2
Número:1
Página de inicio:118
Página de fin:124
DOI: http://dx.doi.org/10.1039/c7se00389g
Título revista:Sustainable Energy and Fuels
Título revista abreviado:Sustain. Energy Fuels
ISSN:23984902
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_23984902_v2_n1_p118_Cecchetto

Referencias:

  • Abraham, K.M., Jiang, Z., A polymer electrolyte-based rechargeable lithium/oxygen battery (1996) J. Electrochem. Soc., 143, pp. 1-5
  • Read, J., Characterization of the lithium/oxygen organic electrolyte battery (2002) J. Electrochem. Soc., 149, pp. A1190-A1195
  • Kuboki, T., Okuyama, T., Ohsaki, T., Takami, N., Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte (2005) J. Power Sources, 146, pp. 766-769
  • Ogasawara, T., Debart, A., Holzapfel, M., Novak, P., Bruce, P.G., Rechargeable Li2O2 electrode for lithium batteries (2006) J. Am. Chem. Soc., 128, pp. 1390-1393
  • Girishkumar, G., McCloskey, B., Luntz, A.C., Swanson, S., Wilcke, W., Lithium-air battery: Promise and challenges (2010) J. Phys. Chem. Lett., 1, pp. 2193-2203
  • Christensen, J., Albertus, P., Sanchez-Carrera, R.S., Lohmann, T., Kozinsky, B., Liedtke, R., Ahmed, J., Kojic, A., A Critical Review of Li/Air Batteries (2012) J. Electrochem. Soc., 159, pp. R1-R30
  • Black, R., Adams, B., Nazar, L.F., Non-aqueous and hybrid Li-O2 batteries (2012) Adv. Energy Mater., 2, pp. 801-815
  • Garcia-Araez, N., Novák, P., Critical aspects in the development of lithium-air batteries (2013) J. Solid State Electrochem., pp. 1-15
  • Read, J., Mutolo, K., Ervin, M., Behl, W., Wolfenstine, J., Driedger, A., Foster, D., Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery (2003) J. Electrochem. Soc., 150, pp. A1351-A1356
  • Kowalczk, I., Read, J., Salomon, M., Li-air batteries: A classic example of limitations owing to solubilities (2007) Pure Appl. Chem., 79, pp. 851-860
  • Zhang, S.S., Foster, D., Read, J., Discharge characteristic of a non-aqueous electrolyte Li/O 2 battery (2010) J. Power Sources, 195, pp. 1235-1240
  • Tran, C., Yang, X.Q., Qu, D., Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity (2010) J. Power Sources, 195, pp. 2057-2063
  • Gallant, B.M., Mitchell, R.R., Kwabi, D.G., Zhou, J., Zuin, L., Thompson, C.V., Shao-Horn, Y., Chemical and morphological changes of Li-O2 battery electrodes upon cycling (2012) J. Phys. Chem. C, 116, pp. 20800-20805
  • Freunberger, S.A., Chen, Y., Drewett, N.E., Hardwick, L.J., Bardé, F., Bruce, P.G., The lithium-oxygen battery with ether-based electrolytes (2011) Angew. Chem., Int. Ed., 50, pp. 8609-8613
  • McCloskey, B.D., Speidel, A., Scheffler, R., Miller, D.C., Viswanathan, V., Hummelshøj, J.S., Nørskov, J.K., Luntz, A.C., Twin problems of interfacial carbonate formation in nonaqueous Li-O2 batteries (2012) J. Phys. Chem. Lett., 3, pp. 997-1001
  • Ottakam Thotiyl, M.M., Freunberger, S.A., Peng, Z., Bruce, P.G., The carbon electrode in nonaqueous Li-O2 cells (2013) J. Am. Chem. Soc., 135, pp. 494-500
  • Fernicola, A., Croce, F., Scrosati, B., Watanabe, T., Ohno, H., LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries (2007) J. Power Sources, 174, pp. 342-348
  • Shin, J.H., Cairns, E.J., N-Methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI-poly(ethylene glycol) dimethyl ether mixture as a Li/S cell electrolyte (2008) J. Power Sources, 177, pp. 537-545
  • Kar, M., Simons, T.J., Forsyth, M., Macfarlane, D.R., Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: A perspective (2014) Phys. Chem. Chem. Phys., 16, pp. 18658-18674
  • Earle, M.J., Seddon, K.R., Ionic liquids. Green solvents for the future (2000) Pure Appl. Chem., 72, pp. 1391-1398
  • Herranz, J., Garsuch, A., Gasteiger, H.A., Using rotating ring disc electrode voltammetry to quantify the superoxide radical stability of aprotic Li-air battery electrolytes (2012) J. Phys. Chem. C, 116, pp. 19084-19094
  • Cecchetto, L., Salomon, M., Scrosati, B., Croce, F., Study of a Li-air battery having an electrolyte solution formed by a mixture of an ether-based aprotic solvent and an ionic liquid (2012) J. Power Sources, 213, pp. 233-238
  • Elia, G.A., Hassoun, J., Kwak, W.J., Sun, Y.K., Scrosati, B., Mueller, F., Bresser, D., Reiter, J., An advanced lithium-air battery exploiting an ionic liquid-based electrolyte (2014) Nano Lett., 14, pp. 6572-6577
  • Allen, C.J., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., Oxygen Electrode Rechargeability in an Ionic Liquid for the Li-Air Battery (2011) J. Phys. Chem. Lett., 2, pp. 2420-2424
  • Monaco, S., Soavi, F., Mastragostino, M., Role of oxygen mass transport in rechargeable Li/O2 batteries operating with ionic liquids (2013) J. Phys. Chem. Lett., 4, pp. 1379-1382
  • Aklalouch, M., Olivares-Marín, M., Lee, R.-C., Palomino, P., Enciso, E., Tonti, D., Mass-transport Control on the Discharge Mechanism in Li-O2 Batteries Using Carbon Cathodes with Varied Porosity (2015) ChemSusChem, 8, pp. 3465-3471
  • Olivares-Marín, M., Palomino, P., Enciso, E., Tonti, D., Simple Method to Relate Experimental Pore Size Distribution and Discharge Capacity in Cathodes for Li/O2 Batteries (2014) J. Phys. Chem. C, 118, pp. 20772-20783
  • Monaco, S., Arangio, A.M., Soavi, F., Mastragostino, M., Paillard, E., Passerini, S., An electrochemical study of oxygen reduction in pyrrolidinium-based ionic liquids for lithium/oxygen batteries (2012) Electrochim. Acta, 83, pp. 94-104
  • De Giorgio, F., Soavi, F., Mastragostino, M., Effect of lithium ions on oxygen reduction in ionic liquid-based electrolytes (2011) Electrochem. Commun., 13, pp. 1090-1093
  • Mozhzhukhina, N., Tesio, A.Y., De Leo, L.P.M., Calvo, E.J., In Situ Infrared Spectroscopy Study of PYR14TFSI Ionic Liquid Stability for Li-O2 Battery (2017) J. Electrochem. Soc., 164, pp. A518-A523
  • Olivares-Marín, M., Palomino, P., Amarilla, J.M., Enciso, E., Tonti, D., Effects of architecture on the electrochemistry of binder-free inverse opal carbons as Li-air cathodes in an ionic liquid-based electrolyte (2013) J. Mater. Chem. A, 1, pp. 14270-14279
  • Soavi, F., Monaco, S., Mastragostino, M., Catalyst-free porous carbon cathode and ionic liquid for high efficiency, rechargeable Li/O2 battery (2013) J. Power Sources, 224, pp. 115-119
  • Allen, C.J., Hwang, J., Kautz, R., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., Oxygen Reduction Reactions in Ionic Liquids and the Formulation of a General ORR Mechanism for Li-Air Batteries (2012) J. Phys. Chem. C, 116, pp. 20755-20764
  • Zhai, D., Wang, H.H., Yang, J., Lau, K.C., Li, K., Amine, K., Curtiss, L.A., Disproportionation in Li-O2 batteries based on a large surface area carbon cathode (2013) J. Am. Chem. Soc., 135, pp. 15364-15372
  • Yang, J., Zhai, D., Wang, H.H., Lau, K.C., Schlueter, J.A., Du, P., Myers, D.J., Amine, K., Evidence for lithium superoxide-like species in the discharge product of a Li-O2 battery (2013) Phys. Chem. Chem. Phys., 15, pp. 3764-3771
  • Johnson, L., Li, C., Liu, Z., Chen, Y., Freunberger, S.A., Ashok, P.C., Praveen, B.B., Bruce, P.G., The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries (2014) Nat. Chem., 6, pp. 1091-1099
  • Olivares-Marín, M., Sorrentino, A., Pereiro, E., Tonti, D., Discharge products of ionic liquid-based Li-O2 batteries observed by energy dependent soft X-ray transmission microscopy (2017) J. Power Sources, 359, pp. 234-241
  • Liu, Y., Suo, L., Lin, H., Yang, W., Fang, Y., Liu, X., Wang, D., Chen, L., Novel approach for a high-energy-density Li-air battery: Tri-dimensional growth of Li2O2 crystals tailored by electrolyte Li + ion concentrations (2014) J. Mater. Chem. A, 2, pp. 9020-9024
  • Liu, H., Jiang, L., Wettability by Ionic Liquids (2016) Small, 12, pp. 9-15
  • Cione, A.M., Mazyar, O.A., Booth, B.D., McCabe, C., Jennings, G.K., Deposition and Wettability of [bmim][triflate] on Self-Assembled Monolayers (2009) J. Phys. Chem. C, 113, pp. 2384-2392
  • Zhou, Q., Boyle, P.D., Malpezzi, L., Mele, A., Shin, J.H., Passerini, S., Henderson, W.A., Phase Behavior of Ionic Liquid-LiX Mixtures: Pyrrolidinium Cations and TFSI- Anions-Linking Structure to Transport Properties (2011) Chem. Mater., 23, pp. 4331-4337
  • Castiglione, F., Ragg, E., Mele, A., Appetecchi, G.B., Montanino, M., Passerini, S., Molecular Environment and Enhanced Diffusivity of Li+ Ions in Lithium-Salt-Doped Ionic Liquid Electrolytes (2011) J. Phys. Chem. Lett., 2, pp. 153-157
  • Li, Y., Zhang, Z., Duan, D., Sun, Y., Wei, G., Hao, X., Liu, S., Meng, W., The correlation of the properties of pyrrolidinium-based ionic liquid electrolytes with the discharge-charge performances of rechargeable Li-O2 batteries (2016) J. Power Sources, 329, pp. 207-215
  • Borodin, O., Smith, G.D., Henderson, W., Li + cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium +TFSI-Ionic liquids (2006) J. Phys. Chem. B, 110, pp. 16879-16886
  • Saito, Y., Umecky, T., Niwa, J., Sakai, T., Maeda, S., Existing condition and migration property of ions in lithium electrolytes with ionic liquid solvent (2007) J. Phys. Chem. B, 111, pp. 11794-11802
  • Gunasekara, I., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M., A study of the influence of lithium salt anions on oxygen reduction reactions in Li-Air batteries (2015) J. Electrochem. Soc., 162, pp. A1055-A1066
  • Sharon, D., Hirsberg, D., Salama, M., Afri, M., Frimer, A.A., Noked, M., Kwak, W., Aurbach, D., Mechanistic Role of Li+ Dissociation Level in Aprotic Li-O2 Battery (2016) ACS Appl. Mater. Interfaces, 8, pp. 5300-5307

Citas:

---------- APA ----------
Cecchetto, L., Tesio, A.Y., Olivares-Marín, M., Espinasa, M.G., Croce, F. & Tonti, D. (2018) . Tailoring oxygen redox reactions in ionic liquid based Li/O 2 batteries by means of the Li + dopant concentration. Sustainable Energy and Fuels, 2(1), 118-124.
http://dx.doi.org/10.1039/c7se00389g
---------- CHICAGO ----------
Cecchetto, L., Tesio, A.Y., Olivares-Marín, M., Espinasa, M.G., Croce, F., Tonti, D. "Tailoring oxygen redox reactions in ionic liquid based Li/O 2 batteries by means of the Li + dopant concentration" . Sustainable Energy and Fuels 2, no. 1 (2018) : 118-124.
http://dx.doi.org/10.1039/c7se00389g
---------- MLA ----------
Cecchetto, L., Tesio, A.Y., Olivares-Marín, M., Espinasa, M.G., Croce, F., Tonti, D. "Tailoring oxygen redox reactions in ionic liquid based Li/O 2 batteries by means of the Li + dopant concentration" . Sustainable Energy and Fuels, vol. 2, no. 1, 2018, pp. 118-124.
http://dx.doi.org/10.1039/c7se00389g
---------- VANCOUVER ----------
Cecchetto, L., Tesio, A.Y., Olivares-Marín, M., Espinasa, M.G., Croce, F., Tonti, D. Tailoring oxygen redox reactions in ionic liquid based Li/O 2 batteries by means of the Li + dopant concentration. Sustain. Energy Fuels. 2018;2(1):118-124.
http://dx.doi.org/10.1039/c7se00389g