Artículo

Varga, T.; Krizsán, K.; Földi, C.; Dima, B.; Sánchez-García, M.; Sánchez-Ramírez, S.; Szöllősi, G.J.; Szarkándi, J.G.; Papp, V.; Albert, L.; Andreopoulos, W.; Angelini, C.; Antonín, V.; Barry, K.W.; Bougher, N.L.; Buchanan, P.; Buyck, B.; Bense, V. (...) Nagy, L.G. "Megaphylogeny resolves global patterns of mushroom evolution" (2019) Nature Ecology and Evolution. 3(4):668-678
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Mushroom-forming fungi (Agaricomycetes) have the greatest morphological diversity and complexity of any group of fungi. They have radiated into most niches and fulfil diverse roles in the ecosystem, including wood decomposers, pathogens or mycorrhizal mutualists. Despite the importance of mushroom-forming fungi, large-scale patterns of their evolutionary history are poorly known, in part due to the lack of a comprehensive and dated molecular phylogeny. Here, using multigene and genome-based data, we assemble a 5,284-species phylogenetic tree and infer ages and broad patterns of speciation/extinction and morphological innovation in mushroom-forming fungi. Agaricomycetes started a rapid class-wide radiation in the Jurassic, coinciding with the spread of (sub)tropical coniferous forests and a warming climate. A possible mass extinction, several clade-specific adaptive radiations and morphological diversification of fruiting bodies followed during the Cretaceous and the Paleogene, convergently giving rise to the classic toadstool morphology, with a cap, stalk and gills (pileate-stipitate morphology). This morphology is associated with increased rates of lineage diversification, suggesting it represents a key innovation in the evolution of mushroom-forming fungi. The increase in mushroom diversity started during the Mesozoic-Cenozoic radiation event, an era of humid climate when terrestrial communities dominated by gymnosperms and reptiles were also expanding. © 2019, The Author(s), under exclusive licence to Springer Nature Limited.

Registro:

Documento: Artículo
Título:Megaphylogeny resolves global patterns of mushroom evolution
Autor:Varga, T.; Krizsán, K.; Földi, C.; Dima, B.; Sánchez-García, M.; Sánchez-Ramírez, S.; Szöllősi, G.J.; Szarkándi, J.G.; Papp, V.; Albert, L.; Andreopoulos, W.; Angelini, C.; Antonín, V.; Barry, K.W.; Bougher, N.L.; Buchanan, P.; Buyck, B.; Bense, V.; Catcheside, P.; Chovatia, M.; Cooper, J.; Dämon, W.; Desjardin, D.; Finy, P.; Geml, J.; Haridas, S.; Hughes, K.; Justo, A.; Karasiński, D.; Kautmanova, I.; Kiss, B.; Kocsubé, S.; Kotiranta, H.; LaButti, K.M.; Lechner, B.E.; Liimatainen, K.; Lipzen, A.; Lukács, Z.; Mihaltcheva, S.; Morgado, L.N.; Niskanen, T.; Noordeloos, M.E.; Ohm, R.A.; Ortiz-Santana, B.; Ovrebo, C.; Rácz, N.; Riley, R.; Savchenko, A.; Shiryaev, A.; Soop, K.; Spirin, V.; Szebenyi, C.; Tomšovský, M.; Tulloss, R.E.; Uehling, J.; Grigoriev, I.V.; Vágvölgyi, C.; Papp, T.; Martin, F.M.; Miettinen, O.; Hibbett, D.S.; Nagy, L.G.
Filiación:Synthetic and Systems Biology Unit, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
Clark University, Worcester, MA, United States
Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
MTA-ELTE ‘Lendület’ Evolutionary Genomics Research Group, Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
Department of Botany, Faculty of Horticultural Science, Szent István University, Budapest, Hungary
Hungarian Mycological Society, Budapest, Hungary
US Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
Via Cappuccini 78, Pordenone, Italy
Jardin Botanico Nacional Ma. Moscoso, Santo Domingo, Dominican Republic
Department of Botany, Moravian Museum, Brno, Czech Republic
Science and Conservation, Department of Biodiversity, Western Australian Herbarium, Kensington, WA, Australia
Manaaki Whenua—Landcare Research, Auckland, New Zealand
Institut de Systématique, Evolution, Biodiversité (ISYEB—UMR 7205), Muséum National d’Histoire Naturelle, Sorbonne Université, CNRS, Paris, France
State Herbarium of South Australia, Adelaide, SA, Australia
Manaaki Whenua—Landcare Research, Lincoln, New Zealand
Oberfeldstraße 9, St. Georgen bei Salzburg, Austria
Department of Biology, San Francisco State University, San Francisco, CA, United States
Zsombolyai u. 56, Székesfehérvár, Hungary
Naturalis Biodiversity Center, Leiden, Netherlands
Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States
Department of Mycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
Natural History Museum, Slovak National Museum, Bratislava, Slovakia
Biodiversity Unit, Finnish Environment Institute, Helsinki, Finland
Instituto de Micología y Botánica, CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
The Jodrell Laboratory, Royal Botanic Gardens, Kew, United Kingdom
Damjanich u. 54, Budapest, Hungary
Department of Biology, Microbiology, Utrecht University, Utrecht, Netherlands
Center for Forest Mycology Research, Northern Research Station, US Forest Service, Madison, WI, United States
Department of Biology, University of Central Oklahoma, Edmond, OK, United States
Botanical Museum, University of Helsinki, Helsinki, Finland
Institute of Plant and Animal Ecology, Russian Academy of Sciences, Ekaterinburg, Russian Federation
Department of Cryptogamic Botany, Swedish Museum of Natural History, Stockholm, Sweden
Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
Herbarium Rooseveltensis Amanitarum, Roosevelt, NJ, United States
The New York Botanical Garden, New York, NY, United States
Plant and Microbial Biology, University of California, Berkeley, CA, United States
Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, United States
Institut National de la Recherche Agronomique, Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems, Champenoux, France
Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
MTA-SZTE ‘Lendulet’ Fungal Pathogenicity Mechanisms Research Group, Szeged, Hungary
Año:2019
Volumen:3
Número:4
Página de inicio:668
Página de fin:678
DOI: http://dx.doi.org/10.1038/s41559-019-0834-1
Título revista:Nature Ecology and Evolution
Título revista abreviado:Nat. Ecol. Evol.
ISSN:2397334X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_2397334X_v3_n4_p668_Varga

Referencias:

  • Jetz, W., Pyron, R.A., The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life (2018) Nat. Ecol. Evol., 2, pp. 850-858. , PID: 29581588
  • Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K., Mooers, A.O., The global diversity of birds in space and time (2012) Nature, 491, pp. 444-448. , COI: 1:CAS:528:DC%2BC38Xhs1ajtrjJ
  • Rabosky, D.L., Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation (2013) Nat. Commun., 4. , PID: 23739623, COI: 1:CAS:528:DC%2BC3sXhsVOqsrjJ
  • Alfaro, M.E., Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary (2018) Nat. Ecol. Evol., 2, pp. 688-696. , PID: 29531346
  • Alfaro, M.E., Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates (2009) Proc. Natl Acad. Sci. USA, 106, pp. 13410-13414. , COI: 1:CAS:528:DC%2BD1MXhtVOitr3J, PID: 19633192
  • Nagy, L.G., The evolution of defense mechanisms correlate with the explosive diversification of autodigesting coprinellus mushrooms (Agaricales, fungi) (2012) Syst. Biol., 61, pp. 595-607. , PID: 22223448
  • Wilson, A.W., Hosaka, K., Mueller, G.M., Evolution of ectomycorrhizas as a driver of diversification and biogeographic patterns in the model mycorrhizal mushroom genus Laccaria (2017) New Phytol., 213, pp. 1862-1873. , COI: 1:CAS:528:DC%2BC2sXitFWntL0%3D, PID: 28164331
  • Wilson, A.W., Binder, M., Hibbett, D.S., Diversity and evolution of ectomycorrhizal host associations in the sclerodermatineae (Boletales, Basidiomycota) (2012) New Phytol., 194, pp. 1079-1095. , PID: 22471405
  • Sánchez-Ramírez, S., Tulloss, R.E., Amalfi, M., Moncalvo, J.M., Palaeotropical origins, boreotropical distribution and increased rates of diversification in a clade of edible ectomycorrhizal mushrooms (Amanita section Caesareae) (2015) J. Biogeogr., 42, pp. 351-363
  • Sánchez-Garcia, M., Matheny, P.B., Is the switch to an ectomycorrhizal state an evolutionary key innovation in mushroom-forming fungi? A case study in the Tricholomatineae (Agaricales) (2017) Evolution, 71, pp. 51-65. , PID: 27767208
  • Wilson, A.W., Binder, M., Hibbett, D.S., Effects of gasteroid fruiting body morphology on diversification rates in three independent clades of fungi estimated using binary state speciation and extinction analysis (2011) Evolution, 65, pp. 1305-1322. , PID: 21166793
  • Hibbett, D.S., After the gold rush, or before the flood? Evolutionary morphology of mushroom-forming fungi (Agaricomycetes) in the early 21st century (2007) Mycol. Res., 111, pp. 1001-1018. , PID: 17964768
  • Hibbett, D.S., Trends in morphological evolution in homobasidiomycetes inferred using maximum likelihood: a comparison of binary and multistate approaches (2004) Syst. Biol., 53, pp. 889-903. , PID: 15764558
  • Hibbett, D.S., Binder, M., Evolution of complex fruiting-body morphologies in homobasidiomycetes (2002) Proc. Biol. Sci., 269, pp. 1963-1969. , COI: 1:CAS:528:DC%2BD38XpsVWjs74%3D, PID: 12396494
  • Matheny, P.B., Major clades of Agaricales: a multilocus phylogenetic overview (2006) Mycologia, 98, pp. 982-995. , PID: 17486974
  • Kirk, P., Cannon, P., Minter, D., (2011) Dictionary of the Fungi, , CABI International, Wallingford, UK
  • Floudas, D., The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes (2012) Science, 336, pp. 1715-1719. , COI: 1:CAS:528:DC%2BC38XptFWntb0%3D, PID: 22745431
  • Kohler, A., Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists (2015) Nat. Genet., 47, pp. 410-415. , COI: 1:CAS:528:DC%2BC2MXjtFemtr4%3D, PID: 25706625
  • Lutzoni, F., Contemporaneous radiations of fungi and plants linked to symbiosis (2018) Nat. Commun., 9. , PID: 30575731, COI: 1:CAS:528:DC%2BC1cXisFyntLbM
  • Rabosky, D.L., Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees (2014) PLoS ONE, 9. , PID: 24586858, COI: 1:CAS:528:DC%2BC2cXhsVGqtrbE
  • McKenna, D.D., Sequeira, A.S., Marvaldi, A.E., Farrell, B.D., Temporal lags and overlap in the diversification of weevils and flowering plants (2009) Proc. Natl Acad. Sci. USA, 106, pp. 7083-7088. , COI: 1:CAS:528:DC%2BD1MXlvFSgt7w%3D, PID: 19365072
  • Looney, B.P., Ryberg, M., Hampe, F., Sánchez-García, M., Matheny, P.B., Into and out of the tropics: global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi (2016) Mol. Ecol., 25, pp. 630-647. , PID: 26642189
  • Krah, F.S., Evolutionary dynamics of host specialization in wood-decay fungi (2018) BMC Evol. Biol., 18, p. 119. , PID: 30075699
  • Beaulieu, J.M., O’Meara, B.C., Extinction can be estimated from moderately sized molecular phylogenies (2015) Evolution, 69, pp. 1036-1043. , PID: 25639334
  • Rabosky, D.L., Challenges in the estimation of extinction from molecular phylogenies: a response to Beaulieu and O’Meara (2016) Evolution, 70, pp. 218-228. , PID: 26593734
  • Rabosky, D.L., Extinction rates should not be estimated from molecular phylogenies (2010) Evolution, 64, pp. 1816-1824. , PID: 20030708
  • May, M.R., Hohna, S., Moore, B.R., A Bayesian approach for detecting the impact of mass-extinction events on molecular phylogenies when rates of lineage diversification may vary (2016) Methods Ecol. Evol., 7, pp. 947-959
  • Tennant, J.P., Mannion, P.D., Upchurch, P., Sutton, M.D., Price, G.D., Biotic and environmental dynamics through the late jurassic-early cretaceous transition: evidence for protracted faunal and ecological turnover (2017) Biol. Rev., 92, pp. 776-814. , PID: 26888552
  • Casadevall, A., Fungi and the rise of mammals (2012) PLoS Pathog., 8. , COI: 1:CAS:528:DC%2BC38Xht1Cns7fP, PID: 22916007
  • Vajda, V., McLoughlin, S., Fungal proliferation at the Cretaceous–Tertiary boundary (2004) Science, 303, p. 1489. , COI: 1:CAS:528:DC%2BD2cXhvFenur0%3D, PID: 15001770
  • Mittelbach, G.G., Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography (2007) Ecology Lett., 10, pp. 315-331
  • Peay, K.G., Kennedy, P.G., Talbot, J.M., Dimensions of biodiversity in the Earth mycobiome (2016) Nat. Rev. Microbiol., 14, pp. 434-447. , COI: 1:CAS:528:DC%2BC28Xps12ntLw%3D, PID: 27296482
  • Shi, L.L., Variation in forest soil fungal diversity along a latitudinal gradient (2014) Fungal Divers., 64, pp. 305-315
  • Tedersoo, L., Global diversity and geography of soil fungi (2014) Science, 346, p. 1256688. , PID: 25430773, COI: 1:CAS:528:DC%2BC2cXhvFKqtb7P
  • Sánchez-Ramírez, S., Etienne, R.S., Moncalvo, J.M., High speciation rate at temperate latitudes explains unusual diversity gradients in a clade of Ectomycorrhizal fungi (2015) Evolution, 69, pp. 2196-2209. , PID: 26179951
  • Gavrilets, S., Losos, J.B., Adaptive radiation: contrasting theory with data (2009) Science, 323, pp. 732-737. , COI: 1:CAS:528:DC%2BD1MXhtlertrc%3D, PID: 19197052
  • Givnish, T.J., Adaptive radiation versus ‘radiation’ and ‘explosive diversification’: why conceptual distinctions are fundamental to understanding evolution (2015) New Phytol., 207, pp. 297-303. , PID: 26032979
  • Maddison, W.P., Midford, P.E., Otto, S.P., Estimating a binary character’s effect on speciation and extinction (2007) Syst. Biol., 56, pp. 701-710. , PID: 17849325
  • Fitzjohn, R.G., Diversitree: Comparative phylogenetic analyses of diversification in R (2012) Methods Ecol. Evol., 3, pp. 1084-1092
  • Berendse, F., Scheffer, M., The angiosperm radiation revisited, an ecological explanation for Darwin’s ‘abominable mystery’ (2009) Ecol. Lett, 12, pp. 865-872. , PID: 19572916
  • Niklas, K.J., Tiffney, B.H., Knoll, A.H., Patterns in vascular land plant diversification (1983) Nature, 303, pp. 614-616
  • Berner, R.A., Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model (2009) Am. J. Sci., 309, pp. 603-606. , COI: 1:CAS:528:DC%2BD1MXhtlCjurbI
  • Staden, R., The Staden sequence analysis package (1996) Mol. Biotechnol., 5, pp. 233-241. , COI: 1:CAS:528:DyaK28Xlt1Sgsb8%3D, PID: 8837029
  • (2018), Species Fungorum, CABI/Royal Botanic Gardens Kew; Knudsen, H., Vesterholt, J., (2008) Funga Nordica: Agaricoid, Boletoid and Cyphelloid Genera, , Nordsvamp:Copenhagen
  • Loytynoja, A., Goldman, N., Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis (2008) Science, 320, pp. 1632-1635. , PID: 18566285, COI: 1:CAS:528:DC%2BD1cXnt1Oju74%3D
  • Loytynoja, A., Goldman, N., From The Cover: an algorithm for progressive multiple alignment of sequences with insertions (2005) Proc. Natl Acad. Sci. USA, 102, pp. 10557-10562. , PID: 16000407, COI: 1:CAS:528:DC%2BD2MXntVSitbs%3D
  • Tóth, A., Iteratively refined guide trees help improving alignment and phylogenetic inference in the mushroom family bolbitiaceae (2013) PLoS ONE, 8. , PID: 23418526, COI: 1:CAS:528:DC%2BC3sXjtlClsbk%3D
  • Gnerre, S., High-quality draft assemblies of mammalian genomes from massively parallel sequence data (2011) Proc. Natl Acad. Sci. USA, 108, pp. 1513-1518. , COI: 1:CAS:528:DC%2BC3MXhs1Smt7c%3D, PID: 21187386
  • Martin, J., Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads (2010) BMC Genomics, 11. , COI: 1:CAS:528:DC%2BC3cXhsFagt73P, PID: 21106091
  • Chin, C.S., Phased diploid genome assembly with single-molecule real-time sequencing (2016) Nat. Methods, 13, pp. 1050-1054. , COI: 1:CAS:528:DC%2BC28Xhs1ykur7K, PID: 5503144
  • Lam, K.K., LaButti, K., Khalak, A., Tse, D., FinisherSC: a repeat-aware tool for upgrading de novo assembly using long reads (2015) Bioinformatics, 31, pp. 3207-3209. , COI: 1:CAS:528:DC%2BC28Xht1Cit7jK, PID: 26040454
  • Grigoriev, I.V., MycoCosm portal: Gearing up for 1000 fungal genomes (2014) Nucleic Acids Res, 42 (699), p. 704
  • Darling, A., Carey, L., Feng, W., The design, implementation, and evaluation of mpiBLAST (2003) Clusterworld Conference & Expo and The 4Th International Conference on Linux Clusters: The HPC Revolution 2003, , LA-UR 03-2862
  • van Dongen, S., (2000) Graph Clustering by Flow Simulation, , PhD thesis, Univ. Utrecht
  • Talavera, G., Castresana, J., Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments (2007) Syst. Biol., 56, pp. 564-577. , COI: 1:CAS:528:DC%2BD2sXhtFKrs7%2FP, PID: 17654362
  • Nagy, L.G., Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities (2016) Mol. Biol. Evol., 33, pp. 959-970. , COI: 1:CAS:528:DC%2BC28XhslWksrrI, PID: 26659563
  • Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies (2014) Bioinformatics, 30, pp. 1312-1313. , COI: 1:CAS:528:DC%2BC2cXmvFCjsbc%3D, PID: 3998144
  • Schliep, K.P., phangorn: phylogenetic analysis in R (2011) Bioinformatics, 27, pp. 592-593. , COI: 1:CAS:528:DC%2BC3MXitVWhur0%3D, PID: 21169378
  • Lartillot, N., Lepage, T., Blanquart, S., PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating (2009) Bioinformatics, 25, pp. 2286-2288. , COI: 1:CAS:528:DC%2BD1MXhtVelu7fP, PID: 19535536
  • Åkerborg, Ö., Sennblad, B., Lagergren, J., Birth-death prior on phylogeny and speed dating (2008) BMC Evol. Biol., 8, p. 77
  • Smith, S.Y., Currah, R.S., Stockey, R.A., Cretaceous and eocene poroid hymenophores from Vancouver Island, British Columbia (2004) Mycologia, 96, pp. 180-186. , PID: 21148842
  • Hibbett, D.S., Grimaldi, D., Donoghue, M.J., Fossil mushrooms from Miocene and Cretaceous ambers and the evolution of homobasidiomycetes (1997) Am. J. Bot., 84, pp. 981-991. , COI: 1:STN:280:DC%2BC3MnjvVGmtw%3D%3D, PID: 21708653
  • Poinar, G., Bird’s nest fungi (Nidulariales: Nidulariaceae) in Baltic and Dominican amber (2014) Fungal Biol, 118, pp. 325-329. , PID: 24607356
  • Brown, R.W., A bracket fungus from the late Tertiary of southwestern Idaho (1940) J. Washington Acad. Sci., 30, pp. 422-424
  • Magallon-Puebla, S., Cevallos-Ferriz, S.R.S., A fossil earthstar (Geasteraceae; Gasteromycetes) from the late cenozoic of puebla, mexico (1993) Am. J. Bot., 80, pp. 1162-1167
  • Near, T.J., Meylan, P.A., Shaffer, H.B., Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles (2005) Am. Nat., 165, pp. 137-146. , PID: 15729646
  • Charif, D., Lobry, J.R., (2007) SeqinR 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis, , https://doi.org/10.1007/978-3-540-35306-5_10, Springer, Berlin
  • Camacho, C., BLAST+: architecture and applications (2009) BMC Bioinformatics, 10, pp. 1-9. , COI: 1:CAS:528:DC%2BD1MXhsF2gu7jP
  • Sanderson, M.J., Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach (2002) Mol. Biol. Evol., 19, pp. 101-109. , COI: 1:CAS:528:DC%2BD38XhtFCitQ%3D%3D, PID: 11752195
  • Yang, Z., PAML 4: phylogenetic analysis by maximum likelihood (2007) Mol. Biol. Evol., 24, pp. 1586-1591. , COI: 1:CAS:528:DC%2BD2sXpsVGrs7c%3D
  • Thorne, J.L., Kishino, H., Painter, I.S., Estimating the rate of evolution of the rate of molecular evolution (1998) Mol. Biol. Evol., 15, pp. 1647-1657. , COI: 1:CAS:528:DyaK1MXjtVOk, PID: 9866200
  • Bodensteiner, P., Binder, M., Moncalvo, J.M., Agerer, R., S Hibbett, D., Phylogenetic relationships of cyphelloid homobasidiomycetes (2004) Mol. Phylogenet. Evol., 33, pp. 501-515. , COI: 1:CAS:528:DC%2BD2cXntVKqu7c%3D, PID: 15336682
  • Holt, B.G., An update of Wallace’s zoogeographic regions of the world (2013) Science, 339, pp. 74-78. , COI: 1:CAS:528:DC%2BC3sXnt1Ol, PID: 23258408
  • (2018) R: A Language and Environment for Statistical Computing, , R Core Team
  • Fitzjohn, R.G., Quantitative traits and diversification (2010) Syst. Biol., 59, pp. 619-633. , PID: 20884813
  • Goldberg, E.E., Lancaster, L.T., Ree, R.H., Phylogenetic inference of reciprocal effects between geographic range evolution and diversification (2011) Syst. Biol., 60, pp. 451-465. , PID: 21551125
  • Pagel, M., Meade, A., (2007) Bayestraits V.3.0.1, , Reading Evolutionary Biology Group
  • Pagel, M., Inferring the historical patterns of biological evolution (1999) Nature, 401, pp. 877-884. , COI: 1:CAS:528:DyaK1MXntFymtL8%3D, PID: 10553904
  • Xie, W., Lewis, P.O., Fan, Y., Kuo, L., Chen, M.H., Improving marginal likelihood estimation for bayesian phylogenetic model selection (2011) Syst. Biol., 60, pp. 150-160. , PID: 21187451
  • Revell, L.J., phytools: an R package for phylogenetic comparative biology (and other things) (2012) Methods Ecol. Evol., 3, pp. 217-223
  • Huelsenbeck, J.P., Nielsen, R., Bollback, J.P., Stochastic mapping of morphological characters (2003) Syst. Biol., 52, pp. 131-158. , PID: 12746144
  • Wickham, H., (2009) Ggplot2. Elegant Graphics for Data Analysis, , https://doi.org/10.1007/978-0-387-98141-3, Springer, New York
  • Paradis, E., Claude, J., Strimmer, K., APE: Analyses of phylogenetics and evolution in R language (2004) Bioinformatics, 20, pp. 289-290. , COI: 1:CAS:528:DC%2BD2cXms1eitg%3D%3D, PID: 14734327
  • Fitzjohn, R.G., Maddison, W.P., Otto, S.P., Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies (2009) Syst. Biol., 58, pp. 595-611. , PID: 20525612
  • Rabosky, D.L., BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees (2014) Methods Ecol. Evol., 5, pp. 701-707
  • Geweke, J., Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments (1992) Bayesian Stat., 4, pp. 169-193
  • Plummer, M., Best, N., Cowles, K., Vines, K., CODA: convergence diagnosis and output analysis for MCMC (2006) R News, 6, pp. 7-11
  • Nylander, J.A.A., Wilgenbusch, J.C., Warren, D.L., Swofford, D.L., AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics (2008) Bioinformatics, 24, pp. 581-583. , COI: 1:CAS:528:DC%2BD1cXitVKis7g%3D, PID: 17766271
  • Moore, B.R., Höhna, S., May, M.R., Rannala, B., Huelsenbeck, J.P., Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures (2016) Proc. Natl Acad. Sci. USA, 113, pp. 9569-9574. , COI: 1:CAS:528:DC%2BC28Xhtlait7%2FM, PID: 27512038
  • Meyer, A.L.S., Wiens, J.J., Estimating diversification rates for higher taxa: BAMM can give problematic estimate of rates and rate shifts (2017) Evolution, 72, pp. 1-15
  • Magallon, S., Sanderson, M.J., Absolute diversification rates in angiosperms clades (2001) Evolution, 55, pp. 1762-1780. , COI: 1:STN:280:DC%2BD3MrnsVWlsA%3D%3D, PID: 11681732
  • Harmon, L.J., Weir, J.T., Brock, C.D., Glor, R.E., Challenger, W., GEIGER: investigating evolutionary radiations (2008) Bioinformatics, 24, pp. 129-131. , COI: 1:CAS:528:DC%2BD1cXhtFKiuw%3D%3D, PID: 18006550
  • Höhna, S., The time-dependent reconstructed evolutionary process with a key-role for mass-extinction events (2015) J. Theor. Biol., 380, pp. 321-331. , PID: 26073724
  • Höhna, S., Fast simulation of reconstructed phylogenies under global time-dependent birth-death processes (2013) Bioinformatics, 29, pp. 1367-1374. , PID: 23543414, COI: 1:CAS:528:DC%2BC3sXotlCgtrk%3D
  • Hohna, S., May, M.R., Moore, B.R., (2015) Phylogeny Simulation and Diversification Rate Analysis with TESS, pp. 1-98. , https://cran.r-project.org/web/packages/TESS/vignettes/Bayesian_Diversification_Rate_Analysis.pdf
  • Kass, R.E., Raftery, A.E., Bayes factors (1995) J. Am. Stat. Assoc., 90, pp. 773-795

Citas:

---------- APA ----------
Varga, T., Krizsán, K., Földi, C., Dima, B., Sánchez-García, M., Sánchez-Ramírez, S., Szöllősi, G.J.,..., Nagy, L.G. (2019) . Megaphylogeny resolves global patterns of mushroom evolution. Nature Ecology and Evolution, 3(4), 668-678.
http://dx.doi.org/10.1038/s41559-019-0834-1
---------- CHICAGO ----------
Varga, T., Krizsán, K., Földi, C., Dima, B., Sánchez-García, M., Sánchez-Ramírez, S., et al. "Megaphylogeny resolves global patterns of mushroom evolution" . Nature Ecology and Evolution 3, no. 4 (2019) : 668-678.
http://dx.doi.org/10.1038/s41559-019-0834-1
---------- MLA ----------
Varga, T., Krizsán, K., Földi, C., Dima, B., Sánchez-García, M., Sánchez-Ramírez, S., et al. "Megaphylogeny resolves global patterns of mushroom evolution" . Nature Ecology and Evolution, vol. 3, no. 4, 2019, pp. 668-678.
http://dx.doi.org/10.1038/s41559-019-0834-1
---------- VANCOUVER ----------
Varga, T., Krizsán, K., Földi, C., Dima, B., Sánchez-García, M., Sánchez-Ramírez, S., et al. Megaphylogeny resolves global patterns of mushroom evolution. Nat. Ecol. Evol. 2019;3(4):668-678.
http://dx.doi.org/10.1038/s41559-019-0834-1