Artículo

Jemth, P.; Karlsson, E.; Vögeli, B.; Guzovsky, B.; Andersson, E.; Hultqvist, G.; Dogan, J.; Güntert, P.; Riek, R.; Chi, C.N. "Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins" (2018) Science Advances. 4(10)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In every established species, protein-protein interactions have evolved such that they are fit for purpose. However, the molecular details of the evolution of new protein-protein interactions are poorly understood. We have used nuclear magnetic resonance spectroscopy to investigate the changes in structure and dynamics during the evolution of a protein-protein interaction involving the intrinsically disordered CREBBP (CREB-binding protein) interaction domain (CID) and nuclear coactivator binding domain (NCBD) from the transcriptional coregulators NCOA (nuclear receptor coactivator) and CREBBP/p300, respectively. The most ancient low-affinity "Cambrian-like" [540 to 600 million years (Ma) ago] CID/NCBD complex contained less secondary structure and was more dynamic than the complexes from an evolutionarily younger "Ordovician-Silurian" fish ancestor (ca. 440 Ma ago) and extant human. The most ancient Cambrian-like CID/NCBD complex lacked one helix and several interdomain interactions, resulting in a larger solvent-accessible surface area. Furthermore, the most ancient complex had a high degree of millisecond-to-microsecond dynamics distributed along the entire sequences of both CID and NCBD. These motions were reduced in the Ordovician-Silurian CID/NCBD complex and further redistributed in the extant human CID/NCBD complex. Isothermal calorimetry experiments show that complex formation is enthalpically favorable and that affinity is modulated by a largely unfavorable entropic contribution to binding. Our data demonstrate how changes in structure and motion conspire to shape affinity during the evolution of a protein-protein complex and provide direct evidence for the role of structural, dynamic, and frustrational plasticity in the evolution of interactions between intrinsically disordered proteins. Copyright © 2018 The Authors, some rights reserved.

Registro:

Documento: Artículo
Título:Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins
Autor:Jemth, P.; Karlsson, E.; Vögeli, B.; Guzovsky, B.; Andersson, E.; Hultqvist, G.; Dogan, J.; Güntert, P.; Riek, R.; Chi, C.N.
Filiación:Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala, SE-75123, Sweden
Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, 12801 East 17th Avenue, Aurora, CO 80045, United States
Protein Physiology Lab, FCEyN, Universidad de Buenos Aires, IQUIBICEN, CONICET, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
Department of Pharmaceutical Biosciences, Uppsala University, BMC Box 591, Uppsala, SE-75124, Sweden
Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-10691, Sweden
Laboratory of Physical Chemistry, ETH Zürich, ETH-Hönggerberg, Zürich, Switzerland
Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, 60438, Germany
Graduate School of Science, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
Palabras clave:Dynamics; Magnetic domains; Nuclear magnetic resonance spectroscopy; Inter-domain interactions; Intrinsically disordered proteins; Isothermal calorimetry; Protein-protein complexes; Protein-protein interactions; Solvent accessible surface areas; Structure and dynamics; Transcriptional coregulators; Proteins
Año:2018
Volumen:4
Número:10
DOI: http://dx.doi.org/10.1126/sciadv.aau4130
Título revista:Science Advances
Título revista abreviado:Sci. Adv.
ISSN:23752548
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_23752548_v4_n10_p_Jemth

Referencias:

  • Leo, C., Chen, J.D., The SRC family of nuclear receptor coactivators (2000) Gene, 245, pp. 1-11
  • Harms, M.J., Thornton, J.W., Evolutionary biochemistry: Revealing the historical and physical causes of protein properties (2013) Nat. Rev. Genet., 14, pp. 559-571
  • McKeown, A.N., Bridgham, J.T., Anderson, D.W., Murphy, M.N., Ortlund, E.A., Thornton, J.W., Evolution of DNA specificity in a transcription factor family produced a new gene regulatory module (2014) Cell, 159, pp. 58-68
  • Lim, S.A., Hart, K.M., Harms, M.J., Marqusee, S., Evolutionary trend toward kinetic stability in the folding trajectory of RNases H (2016) Proc. Natl. Acad. Sci. U.S.A., 113, pp. 13045-13050
  • Nguyen, V., Wilson, C., Hoemberger, M., Stiller, J.B., Agafonov, R.V., Kutter, S., English, J., Kern, D., Evolutionary drivers of thermoadaptation in enzyme catalysis (2017) Science, 355, pp. 289-294
  • Hultqvist, G., Åberg, E., Camilloni, C., Sundell, G.N., Andersson, E., Dogan, J., Chi, C.N., Jemth, P., Emergence and evolution of an interaction between intrinsically disordered proteins (2017) ELife, 6, p. e16059
  • Hughes, T., Liberles, D.A., Whole-genome duplications in the ancestral vertebrate are detectable in the distribution of gene family sizes of tetrapod species (2008) J. Mol. Evol., 67, pp. 343-357
  • Tjandra, N., Bax, A., Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium (1997) Science, 278, pp. 1111-1114
  • Mascioni, A., Veglia, G., Theoretical analysis of residual dipolar coupling patterns in regular secondary structures of proteins (2003) J. Am. Chem. Soc., 125, pp. 12520-12526
  • Demarest, S.J., Martinez-Yamout, M., Chung, J., Chen, H., Xu, W., Dyson, H.J., Evans, R.M., Wright, P.E., Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators (2002) Nature, 415, pp. 549-553
  • Salvi, N., Abyzov, A., Blackledge, M., Multi-timescale dynamics in intrinsically disordered proteins from NMR relaxation and molecular simulation (2016) J. Phys. Chem. Lett., 7, pp. 2483-2489
  • Zhou, N.E., Zhu, B.Y., Sykes, B.D., Hodges, R.S., Relationship between amide proton chemical shifts and hydrogen bonding in amphipathic.alpha.-helical peptides (1992) J. Am. Chem. Soc., 114, pp. 4320-4326
  • Palmer, A.G., III, NMR characterization of the dynamics of biomacromolecules (2004) Chem. Rev., 104, pp. 3623-3640
  • Abyzov, A., Salvi, N., Schneider, R., Maurin, D., Ruigrok, R.W.H., Jensen, M.R., Blackledge, M., Identification of dynamic modes in an intrinsically disordered protein using temperature-dependent NMR relaxation (2016) J. Am. Chem. Soc., 138, pp. 6240-6251
  • Marlow, M.S., Dogan, J., Frederick, K.K., Valentine, K.G., Wand, A.J., The role of conformational entropy in molecular recognition by calmodulin (2010) Nat. Chem. Biol., 6, pp. 352-358
  • Tzeng, S.-R., Kalodimos, C.G., Protein activity regulation by conformational entropy (2012) Nature, 488, pp. 236-240
  • Fersht, A., (1999) Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding, , (Macmillan)
  • Baldwin, R.L., Temperature dependence of the hydrophobic interaction in protein folding (1986) Proc. Natl. Acad. Sci. U.S.A., 83, pp. 8069-8072
  • Lawrence, C.W., Kumar, S., Noid, W.G., Showalter, S.A., Role of ordered proteins in the folding-upon-binding of intrinsically disordered proteins (2014) J. Phys. Chem. Lett., 5, pp. 833-838
  • Ferreiro, D.U., Komives, E.A., Wolynes, P.G., Frustration, function and folding (2018) Curr. Opin. Struct. Biol., 48, pp. 68-73
  • Jemth, P., Mu, X., Engström, A., Dogan, J.A., A frustrated binding interface for intrinsically disordered proteins (2014) J. Biol. Chem., 289, pp. 5528-5533
  • Parra, R.G., Schafer, N.P., Radusky, L.G., Tsai, M.-Y., Guzovsky, A.B., Wolynes, P.G., Ferreiro, D.U., Protein Frustratometer 2: A tool to localize energetic frustration in protein molecules, now with electrostatics (2016) Nucleic Acids Res., 44, pp. W356-W360
  • Lindström, I., Dogan, J., Dynamics, conformational entropy, and frustration in protein-protein interactions involving an intrinsically disordered protein domain (2018) ACS Chem. Biol., 13, pp. 1218-1227
  • Fuglestad, B., Gasper, P.M., McCammon, J.A., Markwick, P.R.L., Komives, E.A., Correlated motions and residual frustration in thrombin (2013) J. Phys. Chem. B, 117, pp. 12857-12863
  • Kuraku, S., Meyer, A., Kuratani, S., Timing of genome duplications relative to the origin of the vertebrates: Did cyclostomes diverge before or after? (2008) Mol. Biol. Evol., 26, pp. 47-59
  • Oldfield, C.J., Meng, J., Yang, J.Y., Yang, M.Q., Uversky, V.N., Dunker, A.K., Flexible nets: Disorder and induced fit in the associations of p53 and 14-3-3 with their partners (2008) BMC Genomics, 9, p. S1
  • Qin, B.Y., Liu, C., Srinath, H., Lam, S.S., Correia, J.J., Derynck, R., Lin, K., Crystal structure of IRF-3 in complex with CBP (2005) Structure, 13, pp. 1269-1277
  • Wright, P.E., Dyson, H.J., Intrinsically disordered proteins in cellular signalling and regulation (2015) Nat. Rev. Mol. Cell Biol., 16, pp. 18-29
  • Johnson, C.M., Fersht, A.R., Protein stability as a function of denaturant concentration: The thermal stability of barnase in the presence of urea (1995) Biochemistry, 34, pp. 6795-6804
  • Davey, N.E., Travé, G., Gibson, T.J., How viruses hijack cell regulation (2011) Trends Biochem. Sci., 36, pp. 159-169
  • Cavanagh, J., Fairbrother, W.J., Palmer, A.G., III, Skelton, N.J., (2007) Protein NMR Spectroscopy: Principles and Practice, , (Academic Press, ed. 2)
  • Vuister, G.W., Bax, A., Measurement of four-bond HN-Ha J-couplings in staphylococcal nuclease (1994) J. Biomol. NMR, 4, pp. 193-200
  • Eichmüller, C., Schüler, W., Konrat, R., Kräutler, B., Simultaneous measurement of intra- and intermolecular NOEs in differentially labeled protein-ligand complexes (2001) J. Biomol. NMR, 21, pp. 107-116
  • Lakomek, N.-A., Ying, J., Bax, A., Measurement of 15N relaxation rates in perdeuterated proteins by TROSY-based methods (2012) J. Biomol. NMR, 53, pp. 209-221
  • Ban, D., Mazur, A., Carneiro, M.G., Sabo, T.M., Giller, K., Koharudin, L.M.I., Becker, S., Lee, D., Enhanced accuracy of kinetic information from CT-CPMG experiments by transverse rotating-frame spectroscopy (2013) J. Biomol. NMR, 57, pp. 73-82
  • Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., Bax, A., NMRPipe: A multidimensional spectral processing system based on UNIX pipes (1995) J. Biomol. NMR, 6, pp. 277-293
  • Vranken, W.F., Boucher, W., Stevens, T.J., Fogh, R.H., Pajon, A., Llinas, M., Ulrich, E.L., Laue, E.D., The CCPN data model for NMR spectroscopy: Development of a software pipeline (2005) Proteins, 59, pp. 687-696
  • Berjanskii, M.V., Wishart, D.S., A simple method to predict protein flexibility using secondary chemical shifts (2005) J. Am. Chem. Soc., 127, pp. 14970-14971
  • Chi, C.N., Vögeli, B., Bibow, S., Strotz, D., Orts, J., Güntert, P., Riek, R., A structural ensemble for the enzyme cyclophilin reveals an orchestrated mode of action at atomic resolution (2015) Angew. Chem. Int. Ed., 54, pp. 11657-11661

Citas:

---------- APA ----------
Jemth, P., Karlsson, E., Vögeli, B., Guzovsky, B., Andersson, E., Hultqvist, G., Dogan, J.,..., Chi, C.N. (2018) . Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins. Science Advances, 4(10).
http://dx.doi.org/10.1126/sciadv.aau4130
---------- CHICAGO ----------
Jemth, P., Karlsson, E., Vögeli, B., Guzovsky, B., Andersson, E., Hultqvist, G., et al. "Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins" . Science Advances 4, no. 10 (2018).
http://dx.doi.org/10.1126/sciadv.aau4130
---------- MLA ----------
Jemth, P., Karlsson, E., Vögeli, B., Guzovsky, B., Andersson, E., Hultqvist, G., et al. "Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins" . Science Advances, vol. 4, no. 10, 2018.
http://dx.doi.org/10.1126/sciadv.aau4130
---------- VANCOUVER ----------
Jemth, P., Karlsson, E., Vögeli, B., Guzovsky, B., Andersson, E., Hultqvist, G., et al. Structure and dynamics conspire in the evolution of affinity between intrinsically disordered proteins. Sci. Adv. 2018;4(10).
http://dx.doi.org/10.1126/sciadv.aau4130