Artículo

Bargsten, C.; Hollinger, R.; Capeluto, M.G.; Kaymak, V.; Pukhov, A.; Wang, S.; Rockwood, A.; Wang, Y.; Keiss, D.; Tommasini, R.; London, R.; Park, J.; Busquet, M.; Klapisch, M.; Shlyaptsev, V.N.; Rocca, J.J. "Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures" (2017) Science Advances. 3(1)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 108 J cm−3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 1019 W cm−2, we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 1022 W cm−2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 1010 J cm−3, equivalent to a pressure of 0.35 Tbar. © 2017 The Authors. some rights reserved.

Registro:

Documento: Artículo
Título:Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures
Autor:Bargsten, C.; Hollinger, R.; Capeluto, M.G.; Kaymak, V.; Pukhov, A.; Wang, S.; Rockwood, A.; Wang, Y.; Keiss, D.; Tommasini, R.; London, R.; Park, J.; Busquet, M.; Klapisch, M.; Shlyaptsev, V.N.; Rocca, J.J.
Filiación:Electrical and Computer Engineering Department, Colorado State University, Fort Collins, CO 80523, United States
Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, 40225, Germany
Physics Department, Colorado State University, Fort Collins, CO 80523, United States
Lawrence Livermore National Laboratory, Livermore, CA 94551, United States
ARTEP Inc., Ellicott City, MD 21042, United States
Palabras clave:Aspect ratio; Nanowires; High aspect ratio; Nanowire arrays; Physical process; Plasma regimes; Relativistic intensity; Three dimensional particle-in-cell simulations; Ultra-high energies; X-ray emission; Plasma simulation
Año:2017
Volumen:3
Número:1
DOI: http://dx.doi.org/10.1126/sciadv.1601558
Título revista:Science Advances
Título revista abreviado:Sci. Adv.
ISSN:23752548
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_23752548_v3_n1_p_Bargsten

Referencias:

  • Glenzer, S.H., MacGowan, B.J., Michel, P., Meezan, N.B., Suter, L.J., Dixit, S.N., Kline, J.L., Moses, E.I., Symmetric inertial confinement fusion implosions at ultra-high laser energies (2010) Science, 327, pp. 1228-1231
  • Hurricane, O.A., Callahan, D.A., Casey, D.T., Celliers, P.M., Cerjan, C., Dewald, E.L., Dittrich, T.R., Tommasini, R., Fuel gain exceeding unity in an inertially confined fusion implosion (2014) Nature, 506, pp. 343-348
  • Remington, B.A., Rudd, R.E., Wark, J.S., From microjoules to megajoules and kilobars to gigabars: Probing matter at extreme states of deformation (2015) Phys. Plasmas, 22, p. 090501
  • Fujioka, S., Takabe, H., Yamamoto, N., Salzmann, D., Wang, F., Nishimura, H., Li, Y., Mima, K., X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion (2009) Nat. Phys., 5, pp. 821-825
  • Remington, B.A., Arnett, D., Drake, R.P., Takabe, H., Modeling astrophysical phenomena in the laboratory with intense lasers (1999) Science, 284, pp. 1488-1494
  • Sefkow, A.B., Bennett, G.R., Geissel, M., Schollmeier, M., Franke, B.C., Atherton, B.W., Efficiency enhancement for Ka X-ray yields from laser-driven relativistic electrons in solids (2011) Phys. Rev. Lett., 106, p. 235002
  • Kitagawa, Y., Mori, Y., Komeda, O., Ishii, K., Hanayama, R., Fujita, K., Okihara, S., Noda, A., Direct heating of a laser-imploded core by ultraintense laser-driven ions (2015) Phys. Rev. Lett., 114, p. 195002
  • Nora, R., Theobald, W., Betti, R., Marshall, F.J., Michel, D.T., Seka, W., Yaakobi, B., Wei, M.S., Gigabar spherical shock generation on the OMEGA laser (2015) Phys. Rev. Lett., 114, p. 045001
  • Dittrich, T.R., Hurricane, O.A., Callahan, D.A., Dewald, E.L., Döppner, T., Hinkel, D.E., Berzak Hopkins, L.F., Kline, J.L., Design of a high-foot high-adiabat ICF capsule for the National Ignition Facility (2014) Phys. Rev. Lett., 112, p. 055002
  • Hoarty, D.J., Allan, P., James, S.F., Brown, C.R.D., Hobbs, L.M.R., Hill, M.P., Harris, J.W.O., Emig, J., Observations of the effect of ionization-potential depression in hot dense plasma (2013) Phys. Rev. Lett., 110, p. 265003
  • Nilson, P.M., Theobald, W., Myatt, J.F., Stoeckl, C., Storm, M., Zuegel, J.D., Betti, R., Sangster, T.C., Bulk heating of solid-density plasmas during high-intensity-laser plasma interactions (2009) Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 79, p. 016406
  • Hoarty, D.J., James, S.F., Brown, C.R.D., Williams, B.M., Chung, H.K., Harris, J.W.O., Upcraft, L., Lee, R.W., Measurements of emission spectra from hot, dense germanium plasma in short pulse laser experiments (2010) High Energy Density Phys, 6, pp. 105-108
  • Brown, C.R.D., Hoarty, D.J., James, S.F., Swatton, D., Hughes, S.J., Morton, J.W., Guymer, T.M., Emig, J., Measurements of electron transport in foils irradiated with a picosecond time scale laser pulse (2011) Phys. Rev. Lett., 106, p. 185003
  • Dervieux, V., Loupias, B., Baton, S., Lecherbourg, L., Glize, K., Rousseaux, C., Reverdin, C., Renaudin, P., Characterization of near-LTE, high-temperature and high-density aluminum plasmas produced by ultra-high intensity lasers (2015) High Energy Density Phys., 16, pp. 12-17
  • Akli, K.U., Hansen, S.B., Kemp, A.J., Freeman, R.R., Beg, F.N., Clark, D.C., Chen, S.D., Key, M.H., Laser heating of solid matter by light-pressure-driven shocks at ultrarelativistic intensities (2008) Phys. Rev. Lett., 100, p. 165002
  • Khattak, F.Y., Clarke, R.J., Divall, E.J., Edwards, M., Foster, P.S., Hooker, C.J., Langley, A.J., Riley, D., Enhanced He-a emission from “smoked” Ti targets irradiated with 400 nm, 45 fs laser pulses (2005) EPL, 72, pp. 242-248
  • Sumeruk, H.A., Kneip, S., Symes, D.R., Churina, I.V., Belolipetski, A.V., Donnelly, T.D., Ditmire, T., Control of strong-laser-field coupling to electrons in solid targets with wavelength-scale spheres (2007) Phys. Rev. Lett., 98, p. 045001
  • Murnane, M.M., Kapteyn, H.C., Gordon, S.P., Bokor, J., Glytsis, E.N., Falcone, R.W., Efficient coupling of high-intensity subpicosecond laser pulses into solids (1993) Appl. Phys. Lett., 62, p. 1068
  • Gordon, S.P., Donnelly, T., Sullivan, A., Hamster, H., Falcone, R.W., X-rays from microstructured targets heated by femtosecond lasers (1994) Opt. Lett., 19, pp. 484-486
  • Kulcsár, G., AlMawlawi, D., Budnik, F.W., Herman, P.R., Moskovits, M., Zhao, L., Marjoribanks, R.S., Intense picosecond x-ray pulses from laser plasmas by use of nanostructured “velvet” targets (2000) Phys. Rev. Lett., 84, pp. 5149-5152
  • Rajeev, P.P., Taneja, P., Ayyub, P., Sandhu, A.S., Kumar, G.R., Metal nanoplasmas as bright sources of hard X-ray pulses (2003) Phys. Rev. Lett., 90, p. 115002
  • Mondal, S., Chakraborty, I., Ahmad, S., Carvalho, D., Singh, P., Lad, A.D., Narayanan, V., Sheng, Z.M., Highly enhanced hard x-ray emission from oriented metal nanorod arrays excited by intense femtosecond laser pulses (2011) Phys. Rev. B, 83, p. 035408
  • Nishikawa, T., Suzuki, S., Watanabe, Y., Zhou, O., Nakano, H., Efficient water-window X-ray pulse generation from femtosecond-laser-produced plasma by using a carbon nanotube target (2004) Appl. Phys. B, 78, pp. 885-890
  • Purvis, M.A., Shlyaptsev, V.N., Hollinger, R., Bargsten, C., Pukhov, A., Prieto, A., Wang, Y., Rocca, J.J., Relativistic plasma nanophotonics for ultrahigh energy density physics (2013) Nat. Photonics, 7, pp. 796-800
  • Shevelko, A.P., X-ray spectroscopy of laser-produced plasmas using a von Hamos spectrograph (1998) Proc. SPIE, 3406, pp. 91-108
  • Ryu, D., Chattopadhyay, I., Choi, E., Equation of state in numerical relativistic hydrodynamics (2006) Astrophys. J. Suppl. Ser., 166, pp. 410-420
  • Kaymak, V., Pukhov, A., Shlyaptsev, V.N., Rocca, J.J., Nanoscale ultradense Z-pinch formation from laser-irradiated nanowire arrays (2016) Phys. Rev. Lett., 117, p. 035004
  • Clark, D.S., Weber, C.R., Milovich, J.L., Salmonson, J.D., Kritcher, A.L., Haan, S.W., Hammel, B.A., Edwards, M.J., Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility (2016) Phys. Plasmas, 23, p. 056302
  • Ditmire, T., Zweiback, J., Yanovsky, V.P., Cowan, T.E., Hays, G., Wharton, K.B., Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters (1999) Nature, 398, pp. 489-492
  • Hoare, J.P., On the role of boric-acid in the Watts bath (1986) J. Electrochem. Soc., 133, pp. 2491-2494
  • Pukhov, A., Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab) (1999) J. Plasma Phys., 61, pp. 425-433
  • Zhidkov, A., Sasaki, A., Effect of field ionization on interaction of an intense subpicosecond laser pulse with foils (2000) Phys. Plasmas, 7, pp. 1341-1344
  • Karmakar, A., Pukhov, A., Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses (2007) Laser Part. Beams, 25, pp. 371-377
  • Shlyaptsev, V.N., Rocca, J.J.G., Osterheld, A.L., Dynamics of a capillary discharge x-ray laser (1995) Proc. SPIE, 2520, pp. 365-372
  • Klapisch, M., Busquet, M., Bar-Shalom, A., A new and improved version of HULLAC (2007) AIP Conf. Proc., 926, p. 206
  • Biberman, L.M., Vorob’ev, V.S., Yakubov, I.T., (1987) Kinetics of Nonequilibrium Low-Temperature Plasmas, p. 498. , Springer
  • Holstein, T., Imprisonment of resonance radiation in gases (1947) Phys. Rev., 72, pp. 1212-1233
  • Synge, J.L., (1957) The Relativistic Gas, , North-Holland Publishing Co

Citas:

---------- APA ----------
Bargsten, C., Hollinger, R., Capeluto, M.G., Kaymak, V., Pukhov, A., Wang, S., Rockwood, A.,..., Rocca, J.J. (2017) . Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures. Science Advances, 3(1).
http://dx.doi.org/10.1126/sciadv.1601558
---------- CHICAGO ----------
Bargsten, C., Hollinger, R., Capeluto, M.G., Kaymak, V., Pukhov, A., Wang, S., et al. "Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures" . Science Advances 3, no. 1 (2017).
http://dx.doi.org/10.1126/sciadv.1601558
---------- MLA ----------
Bargsten, C., Hollinger, R., Capeluto, M.G., Kaymak, V., Pukhov, A., Wang, S., et al. "Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures" . Science Advances, vol. 3, no. 1, 2017.
http://dx.doi.org/10.1126/sciadv.1601558
---------- VANCOUVER ----------
Bargsten, C., Hollinger, R., Capeluto, M.G., Kaymak, V., Pukhov, A., Wang, S., et al. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures. Sci. Adv. 2017;3(1).
http://dx.doi.org/10.1126/sciadv.1601558