Artículo

Spagnuolo, M.G.; Carballo, F.D.; Marco Figuera, R.; Rossi, A.P. "MarsLux: HI-Resolution Illumination Maps Generator for Mars" (2019) Earth and Space Science. 6(1):146-155
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Illumination simulation codes for the Moon's surface have been thoroughly developed during the last years. Despite works done for the Moon, no studies have investigated the relation between sunlight illumination and the Martian surface applying those codes done for the Moon to Mars. The objective of this work is to describe the development of a surface illumination simulation code, called MarsLux, which allows users to make a detailed investigation of the illumination conditions on Mars, based on its topography and the relative position of the Sun. Our code can derive accurate illumination maps, form topographic data, showing areas that are fully illuminated, areas in total shadow, and areas with partial shade, in short computational times. Although the code does not take into account any atmospheric effect, the results proved to be of high accuracy. The maps generated are useful for geomorphological studies, to study gullies, thermal weathering, or mass wasting processes as well as for producing energy budget maps for future exploration missions. ©2019. The Authors.

Registro:

Documento: Artículo
Título:MarsLux: HI-Resolution Illumination Maps Generator for Mars
Autor:Spagnuolo, M.G.; Carballo, F.D.; Marco Figuera, R.; Rossi, A.P.
Filiación:IDEAN, Universidad de Buenos Aires, Conicet, Buenos Aires, Argentina
SEGEMAR, Buenos Aires, Argentina
Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen, Germany
Palabras clave:illumination; Mars; open source
Año:2019
Volumen:6
Número:1
Página de inicio:146
Página de fin:155
DOI: http://dx.doi.org/10.1029/2018EA000403
Título revista:Earth and Space Science
Título revista abreviado:Earth Space Sci.
ISSN:23335084
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_23335084_v6_n1_p146_Spagnuolo

Referencias:

  • Acton, C.H., Jr., Ancillary data services of NASA's navigation and ancillary information facility (1996) Planetary and Space Science, 44 (1), pp. 65-70. , https://doi.org/10.1016/0032-0633(95)00107-7
  • Allison, M., Accurate analytic representations of solar time and seasons on Mars with applications to the pathfinder/surveyor missions (1997) Geophysical Research Letters, 24 (16), pp. 1967-1970. , https://doi.org/10.1029/97GL01950
  • Allison, M., McEwen, M., A post-pathfinder evaluation of aerocentric solar coordinates with improved timing recipes for Mars seasonal/diurnal climate studies (2000) Planetary and Space Science, 48 (2-3), pp. 215-235. , https://doi.org/10.1016/S0032-0633(99)00092-6
  • Bussey, D.B.J., McGovern, J.A., Spudis, P.D., Neish, C.D., Noda, H., Ishihara, Y., Sorensen, S.A., Illumination conditions of the South Pole of the Moon derived using Kaguya topography (2010) Icarus, 208 (2), pp. 558-564
  • Bussey, D.B.J., Spudis, P.D., Robinson, M.S., Illumination conditions at the lunar south pole (1999) Geophysical Research Letters, 26 (9), pp. 1187-1190. , https://doi.org/10.1029/1999GL900213
  • Carpenter, J.D., Fisackerly, R., De Rosa, D., Houdou, B., Scientific preparations for lunar exploration with the European lunar lander (2012) Planetary and Space Science, 74, pp. 208-223
  • Chen-Chen, H., Pérez-Hoyos, S., Sánchez-Lavega, A., Dust particle size and optical depth on Mars retrieved by the MSL navigation cameras (2019) Icarus, 319, pp. 43-57. , https://doi.org/10.1016/j.icarus.2018.09.010
  • De Rosa, D., Bussey, B., Cahill, J.T., Lutz, T., Crawford, I.A., Hackwill, T., Gasselt, S., Carpenter, J.D., Characterisation of potential landing sites for the European space agency's lunar Lander project (2012) Planetary and Space Science, 74, pp. 224-246
  • Dundas, C.M., Bramson, A.M., Ojha, L., Wray, J.J., Mellon, M.T., Byrne, S., Holt, J.W., Exposed subsurface ice sheets in the Martian mid-latitudes (2018) Science, 359 (6372), pp. 199-201. , https://doi.org/10.1126/science.aao1619
  • Evans, W., Kirkpatrick, D., Townsend, G., Right-triangulated irregular networks (2001) Algorithmica, 30 (2), pp. 264-286
  • Garcia-Chevesich, P., Bendek, E., Pizarro, R., Valdes-Pineda, R., Gonzalez, D., Bown, H., Martínez, E., Gonzalez, L., Weathering processes on Martian craters: Implications on recurring slope lineae and the location of liquid water (2017) Open Journal of Modern Hydrology, 7, pp. 245-256
  • Gläser, P., Scholten, F., De Rosa, D., Marco Figuera, R., Oberst, J., Mazarico, E., Neumann, G.A., Robinson, M.S., Illumination conditions at the lunar south pole using high resolution digital terrain models from LOLA (2014) Icarus, 243, pp. 78-90
  • Kirk, R.L.M., Holmberg, I.M., Keszthelyi, L.P., Redding, B.L., Delamere, W.A., Gallagher, D., Chapel, J.D., McEwen, A.S., Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of candidate Phoenix landing sites (2008) Journal of Geophysical Research, 113. , https://doi.org/10.1029/2007JE003000
  • Kolb, K.J., Pelletier, J.D., McEwen, A.S., Modeling the formation of bright slope deposits associated with gullies in Hale crater, Mars: Implications for recent liquid water (2010) Icarus, 205-1, pp. 113-137
  • Marco Figuera, R., Gläser, P., Oberst, J., de Rosa, D., (2014) Calculation of illumination conditions at the lunar south pole—Parallel programming approach. EPSC abstracts, 9
  • Margot, J.L., Campbell, D.B., Jurgens, R.F., Slade, M.A., Topography of the lunar poles from radar interferometry: A survey of cold trap locations (1999) Science, 284 (5420), pp. 1658-1660. , https://doi.org/10.1126/science.284.5420.1658
  • Marks, D., Elmore, P., Blain, C.A., Bourgeois, B., Petry, F., Ferrini, V., A variable resolution right TIN approach for gridded oceanographic data (2017) Computers & Geosciences, 109, pp. 59-66. , https://doi.org/10.1016/j.cageo.2017.07.008
  • Mazarico, E., Neumann, G.A., Smith, D.E., Zuber, M.T., Torrence, M.H., Illumination conditions of the lunar polar regions using LOLA topography (2011) Icarus, 211 (2), pp. 1066-1081. , https://doi.org/10.1016/j.icarus.2010.10.030
  • McEwen, A.S., Eliason, E.M., Bergstrom, J.W., Bridges, N.T., Hansen, C.J., Delamere, W.A., Grant, J.A., Weitz, C.M., Mars reconnaissance orbiter's High Resolution Imaging Science Experiment (HiRISE) (2007) Journal of Geophysical Research, 112. , https://doi.org/10.1029/2005JE002605
  • Hamilton, V., Mars scientific goals, objectives, investigations, and priorities: 2015 (2015) The Mars Exploration Program Analysis Group (MEPAG), , http://mepag.nasa.gov/reports.cfm, (Ed.),, (). Retrieved from
  • Noda, H., Araki, H., Goossens, S., Ishihara, Y., Matsumoto, K., Tazawa, S., Kawano, N., Sasaki, S., Illumination conditions at the lunar polar regions by KAGUYA (SELENE) laser altimeter (2008) Geophysical Research Letters, 35. , https://doi.org/10.1029/2008GL035692
  • Núñez, J.I., Barnouin, O.S., Murchie, S.L., Seelos, F.P., McGovern, J.A., Seelos, K.D., Buczkowski, D.L., New insights into gully formation on Mars: Constraints from composition as seen by MRO/CRISM (2016) Geophysical Research Letters, 43, pp. 8893-8902. , https://doi.org/10.1002/2016GL068956
  • Raack, J., Reiss, D., Appéré, T., Vincendon, M., Ruesch, O., Hiesinger, H., Present-day seasonal gully activity in a south polar pit (Sisyphi Cavi) on Mars (2015) Icarus, 251, pp. 226-243. , https://doi.org/10.1016/j.icarus.2014.03.040
  • Sherwood, B., Space architecture for MoonVillage (2017) Acta Astronautica, 139, pp. 396-406. , https://doi.org/10.1016/j.actaastro.2017.07.019
  • Snyder, J.P., (1987) Map projections: A working manual, , Geological Survey (U.S)
  • Speyerer, E.J., Robinson, M.S., Persistently illuminated regions at the lunar poles: Ideal sites for future exploration (2013) Icarus, 222 (1), pp. 122-136. , https://doi.org/10.1016/j.icarus.2012.10.010
  • Stenzel, C., Weiss, L., Rohr, T., Sustainable challenges on the moon (2018) Current Opinion in Green and Sustainable Chemistry, 9, pp. 8-12. , https://doi.org/10.1016/j.cogsc.2017.10.002
  • Strausberg, M.J., Wang, H., Richardson, M.I., Ewald, S.P., Toigo, A.D., Observations of initiation and evolution of the 2001 Mars global dust storm (2005) Journal of Geophysical Research, 110. , https://doi.org/10.1029/2004JE002361
  • Wu, Y., Hapke, B., Spectroscopic observations of the moon at the lunar surface (2018) Earth and Planetary Science Letters, 484, pp. 145-153. , https://doi.org/10.1016/j.epsl.2017.12.003

Citas:

---------- APA ----------
Spagnuolo, M.G., Carballo, F.D., Marco Figuera, R. & Rossi, A.P. (2019) . MarsLux: HI-Resolution Illumination Maps Generator for Mars. Earth and Space Science, 6(1), 146-155.
http://dx.doi.org/10.1029/2018EA000403
---------- CHICAGO ----------
Spagnuolo, M.G., Carballo, F.D., Marco Figuera, R., Rossi, A.P. "MarsLux: HI-Resolution Illumination Maps Generator for Mars" . Earth and Space Science 6, no. 1 (2019) : 146-155.
http://dx.doi.org/10.1029/2018EA000403
---------- MLA ----------
Spagnuolo, M.G., Carballo, F.D., Marco Figuera, R., Rossi, A.P. "MarsLux: HI-Resolution Illumination Maps Generator for Mars" . Earth and Space Science, vol. 6, no. 1, 2019, pp. 146-155.
http://dx.doi.org/10.1029/2018EA000403
---------- VANCOUVER ----------
Spagnuolo, M.G., Carballo, F.D., Marco Figuera, R., Rossi, A.P. MarsLux: HI-Resolution Illumination Maps Generator for Mars. Earth Space Sci. 2019;6(1):146-155.
http://dx.doi.org/10.1029/2018EA000403