Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Atmospheric gravity waves (GW) serve as an essential mechanism in the transport of energy and momentum flux from the low to the upper atmosphere. In the last decades satellite observations have become an important part in the analysis of GW due to their global and frequent coverage. Present procedures often provide GW absolute momentum flux (MF), ambiguous 3-D propagation direction, and apparent vertical wavelengths. We here introduce a method with close sounding quartets, which allows the calculation for GW of the net MF, the definite propagation direction, and “real” wavelengths. Among the satellite observational techniques, Global Positioning System (GPS) radio occultation (RO) retrievals provide temperature profiles that after adequate processing may yield GW properties like wavelengths, MF, and energy. Our procedure is illustrated by an example under requirements that tend to ensure that four GPS RO soundings are observing the same GW. The future increase of satellite measuring devices due to new missions (including GPS RO) will lead to a higher spatial and temporal density of profiles that may eventually allow the attainment of GW climatologies of net MF, propagation direction, and “real” vertical wavelengths. © 2018. The Authors.

Registro:

Documento: Artículo
Título:A Method to Determine Gravity Wave Net Momentum Flux, Propagation Direction, and “Real” Wavelengths: A GPS Radio Occultations Soundings Case Study
Autor:Alexander, P.; Schmidt, T.; de la Torre, A.
Filiación:Instituto de Física de Buenos Aires, CONICET, Ciudad Universitaria Pabellón 1, Buenos Aires, Argentina
Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam, Germany
LIDTUA, Facultad de Ingeniería, Universidad Austral and CONICET, Buenos Aires, Argentina
Palabras clave:gravity waves; momentum flux; real wavelengths; flux measurement; GPS; gravity wave; instrumentation; numerical method; radio; temperature effect; temperature profile; upper atmosphere; wave direction; wave propagation; wavelength
Año:2018
Volumen:5
Número:6
Página de inicio:222
Página de fin:230
DOI: http://dx.doi.org/10.1002/2017EA000342
Título revista:Earth and Space Science
Título revista abreviado:Earth Space Sci.
ISSN:23335084
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_23335084_v5_n6_p222_Alexander

Referencias:

  • Alexander, M.J., Global and seasonal variations in three-dimensional gravity wave momentum flux from satellite limb-sounding temperatures (2015) Geophysical Research Letters, 42, pp. 6860-6867. , https://doi.org/10.1002/2015GL065234
  • Alexander, P., de la Torre, A., Llamedo, P., Interpretation of gravity wave signatures in GPS radio occultations (2008) Journal of Geophysical Research, 113. , https://doi.org/10.1029/2007JD009390
  • Alexander, P., de la Torre, A., Schmidt, T., Llamedo, P., Hierro, R., Limb sounders tracking topographic gravity wave activity from the stratosphere to the ionosphere around midlatitude Andes (2015) Journal of Geophysical Research: Space Physics, 120, pp. 9014-9022. , https://doi.org/10.1002/2015JA021409
  • Alexander, M.J., Gille, J., Cavanaugh, C., Coffey, M., Craig, C., Eden, T., Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder observations (2008) Journal of Geophysical Research, 113. , https://doi.org/10.1029/2007JD008807
  • de la Torre, A., Alexander, P., Schmidt, T., Llamedo, P., Hierro, R., On the distortions in calculated GW parameters during slanted atmospheric soundings (2018) Atmos Measurement Techniques, 11, pp. 1363-1375. , https://doi.org/10.5194/amt-11-1363-2018
  • de la Torre, A., Schmidt, T., Wickert, J., A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP (2006) Geophysical Research Letters, 33. , https://doi.org/10.1029/2006GL027696
  • Ern, M., Hoffmann, L., Preusse, P., Directional gravity wave momentum fluxes in the stratosphere derived from high-resolution AIRS temperature data (2017) Geophysical Research Letters, 44, pp. 475-485. , https://doi.org/10.1002/2016GL072007
  • Ern, M., Preusse, P., Alexander, M.J., Warner, C.D., Absolute values of gravity wave momentum flux derived from satellite data (2004) Journal of Geophysical Research, 109. , https://doi.org/10.1029/2004JD004752
  • Faber, A., Llamedo, P., Schmidt, T., de la Torre, A., Wickert, J., On the determination of gravity wave momentum flux from GPS radio occultation data (2013) Atmos Measurement Techniques, 6, pp. 3169-3180. , https://doi.org/10.5194/amt-6-3169-2013
  • Geller, M.A., Alexander, M.J., Love, P.T., Bacmeister, J., Ern, M., Hertzog, A., A comparison between gravity wave momentum fluxes in observations and climate models (2013) Journal of Climate, 26, pp. 6383-6405. , https://doi.org//10.1175/JCLI-D-12-00545.1
  • Healy, S.B., Eyre, J.R., Retrieving temperature, water vapour and surface pressure information from refractive-index profiles derived by radio occultation: A simulation study (2000) Quarterly Journal of the Royal Meteorological Society, 126, pp. 1661-1683
  • Hindley, N.P., Wright, C.J., Smith, N.D., Mitchell, N.J., The southern stratospheric gravity wave hot spot: Individual waves and their momentum fluxes measured by COSMIC GPS-RO (2015) Atmos Chemical Physics, 15, pp. 7797-7818. , https://doi.org/10.5194/acp-15-7797-2015
  • John, S.R., Kumar, K.K., A discussion on the methods of extracting gravity wave perturbations from space-based measurements (2013) Geophysical Research Letters, 40, pp. 2406-2410. , https://doi.org/10.1002/grl.50451
  • Kursinski, E.R., Hajj, G.A., Schofield, J.T., Linfield, R.P., Hardy, K.R., Observing Earth's atmosphere with radio occultation measurement using the Global Positioning System (1997) Journal of Geophysical Research, 102, pp. 23,429-23,465
  • Lange, M., Jacobi, C., Analysis of gravity waves from radio occultation measurements (2003) First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, pp. 479-484. , C. Reigber, H. Lühr, P. Schwintzer, (Eds.)
  • Luna, D., Alexander, P., de la Torre, A., Evaluation of uncertainty in gravity wave potential energy calculations through GPS radio occultation measurements (2013) Advances in Space Research, 52, pp. 879-882
  • Marquardt, C., Healy, S., Measurement noise and stratospheric gravity wave characteristics obtained from GPS occultation data (2005) Journal of the Meteorological Society of Japan, 83, pp. 417-428
  • McDonald, A.J., Gravity wave occurrence statistics derived from paired COSMIC/FORMOSAT3 observations (2012) Journal of Geophysical Research, 117. , https://doi.org/10.1029/2011JD016715
  • Plougonven, R., Zhang, F., Internal gravity waves from atmospheric jets and fronts (2014) Reviews of Geophysics, 52, pp. 33-76. , https://doi.org/10.1002/2012RG000419
  • Preusse, P., Dörnbrack, A., Eckermann, S.D., Riese, M., Schaeler, B., Bacmeister, J.T., Space-based measurements of stratospheric mountain waves by CRISTA 1. Sensitivity, analysis method, and a case study (2002) Journal of Geophysical Research, 107. , https://doi.org/10.1029/2001JD000699
  • Schmidt, T., Alexander, P., de la Torre, A., Stratospheric gravity wave momentum flux from radio occultations (2016) Journal of Geophysical Research: Atmospheres, 121, pp. 4443-4467. , https://doi.org/10.1002/2015JD024135
  • Torrence, C., Compo, G.P., A practical guide to wavelet analysis (1998) Bulletin of the American Meteorological Society, 79, pp. 61-78
  • Wang, L., Alexander, M.J., Global estimates of gravity wave parameters from GPS radio occultation temperature data (2010) Journal of Geophysical Research, 115. , https://doi.org/10.1029/2010JD013860
  • Wright, C.J., Hindley, N.P., Mitchell, N.J., Combining AIRS and MLS observations for three-dimensional gravity wave measurement (2016) Geophysical Research Letters, 43, pp. 884-893. , https://doi.org/10.1002/2015GL067233
  • Wu, D.L., Preusse, P., Eckermann, S.D., Jiang, J.H., de la Torre Juarez, M., Coy, L., Wang, D.Y., Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques (2006) Advances in Space Research, 37, pp. 2269-2277

Citas:

---------- APA ----------
Alexander, P., Schmidt, T. & de la Torre, A. (2018) . A Method to Determine Gravity Wave Net Momentum Flux, Propagation Direction, and “Real” Wavelengths: A GPS Radio Occultations Soundings Case Study. Earth and Space Science, 5(6), 222-230.
http://dx.doi.org/10.1002/2017EA000342
---------- CHICAGO ----------
Alexander, P., Schmidt, T., de la Torre, A. "A Method to Determine Gravity Wave Net Momentum Flux, Propagation Direction, and “Real” Wavelengths: A GPS Radio Occultations Soundings Case Study" . Earth and Space Science 5, no. 6 (2018) : 222-230.
http://dx.doi.org/10.1002/2017EA000342
---------- MLA ----------
Alexander, P., Schmidt, T., de la Torre, A. "A Method to Determine Gravity Wave Net Momentum Flux, Propagation Direction, and “Real” Wavelengths: A GPS Radio Occultations Soundings Case Study" . Earth and Space Science, vol. 5, no. 6, 2018, pp. 222-230.
http://dx.doi.org/10.1002/2017EA000342
---------- VANCOUVER ----------
Alexander, P., Schmidt, T., de la Torre, A. A Method to Determine Gravity Wave Net Momentum Flux, Propagation Direction, and “Real” Wavelengths: A GPS Radio Occultations Soundings Case Study. Earth Space Sci. 2018;5(6):222-230.
http://dx.doi.org/10.1002/2017EA000342