Artículo

Tesler, F.; Adda, C.; Tranchant, J.; Corraze, B.; Janod, E.; Cario, L.; Stoliar, P.; Rozenberg, M. "Relaxation of a Spiking Mott Artificial Neuron" (2018) Physical Review Applied. 10(5)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We consider the phenomenon of electric Mott transition (EMT), which is an electrically induced insulator-to-metal transition. Experimentally, it is observed that depending on the magnitude of the electric excitation, the final state may show a short-lived or a long-lived resistance change. We extend a previous model for the EMT to include the effect of local structural distortions through an elastic energy term. We find that by strong electric pulsing, the induced metastable phase may become further stabilized by the electroelastic effect. We present a systematic study of the model by numerical simulations and compare the results to experiments in Mott insulators of the AM4Q8 family. Our work significantly extends the scope of our recently introduced leaky-integrate-and-fire Mott neuron [P. Stoliar et al., Adv. Funct. Mat. 27, 1604740 (2017)] to provide a better insight into the physical mechanism of its relaxation. This is a key feature for future implementations of neuromorphic circuits. © 2018 American Physical Society.

Registro:

Documento: Artículo
Título:Relaxation of a Spiking Mott Artificial Neuron
Autor:Tesler, F.; Adda, C.; Tranchant, J.; Corraze, B.; Janod, E.; Cario, L.; Stoliar, P.; Rozenberg, M.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBA, CONICET, Cuidad Universitaria, Buenos Aires, 1428, Argentina
Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, Nantes cedex 3, 44322, France
CIC NanoGUNE, Tolosa Hiribidea 76, Donostia-San Sebastian, 20018, Spain
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan
Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay cedex, 91405, France
Department of Physics and Center for Advance Nanoscience, University of California San Diego, San Diego, CA 92093, United States
Año:2018
Volumen:10
Número:5
DOI: http://dx.doi.org/10.1103/PhysRevApplied.10.054001
Título revista:Physical Review Applied
Título revista abreviado:Phys. Rev. Appl.
ISSN:23317019
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_23317019_v10_n5_p_Tesler

Referencias:

  • Mallat, S., Group invariant scattering (2012) Commun. Pure. Appl. Math., 65, p. 1331
  • Schmidhuber, J., Deep learning in neural networks: An overview (2015) Neural. Netw., 61, p. 85
  • Wong, H.-S.P., Lee, H.-Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P.-S., Lee, B., Tsai, M.-J., Metal-Oxide RRAM (2012) Proceedings of the IEEE, 100, p. 1951
  • Tang, S., Tesler, F., Marlasca, F.G., Levy, P., Dobrosavljevicć, V., Rozenberg, M., Shock waves and commutation speed of memristors (2016) Phys. Rev. X, 6, p. 011028
  • Tesler, F., Tang, S., Dobrosavljević, V., Rozenberg, M., (2017) Spintronics X, 1035, p. 103572L. , (International Society for Optics and Photonics, San Diego, CA)
  • Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W., Nanoscale memristor device as synapse in neuromorphic systems (2010) Nano Letters, 10, p. 1297
  • Pershin, Y.V., Ventra, M.D., Experimental demonstration of associative memory with memristive neural networks (2010) Neural. Netw., 23, p. 881
  • Pickett, M.D., Medeiros-Ribeiro, G., Williams, R.S., A scalable neuristor built with Mott memristors (2013) Nature Mat, 12, p. 114
  • Babacan, Y., Kacar, F., Gürkan, K., A spiking and bursting neuron circuit based on memristor (2016) Neurocomputing, 203, p. 86
  • Lepage, D., Chaker, M., Thermodynamics of self-oscillations in (Equation presented) for spiking solid-state neurons (2017) AIP Adv., 7, p. 055203
  • Gao, L., Chen, P.-Y., Yu, S., (Equation presented) based oscillation neuron for neuromorphic computing (2017) Appl. Phys. Lett., 111, p. 103503
  • Lin, J., Annadi, A., Sonde, S., Chen, C., Stan, L., Achari, K.V.L.V., Ramanathan, S., Guha, S., (2016) 2016 IEEE International Electron Devices Meeting (IEDM), p. 3451. , IEEE, San Francisco
  • Stoliar, P., Tranchant, J., Corraze, B., Janod, E., Besland, M.-P., Tesler, F., Rozenberg, M., Cario, L., A Leaky-Integrate-and-Fire Neuron Analog Realized with a Mott Insulator (2017) Adv. Funct. Mater., 27, p. 1604740
  • Stoliar, P., Cario, L., Janod, E., Corraze, B., Guillot-Deudon, C., Salmon-Bourmand, S., Guiot, V., Rozenberg, M., Universal Electric-Field-Driven Resistive Transition in Narrow-Gap Mott Insulators (2013) Advanced Materials, 25, p. 3222
  • Imada, M., Fujimori, A., Tokura, Y., Metal-insulator transitions (1998) Rev. Mod. Phys., 70, p. 1039
  • Guiot, V., Cario, L., Janod, E., Corraze, B., Phuoc, V.T., Rozenberg, M., Stoliar, P., Roditchev, D., Avalanche breakdown in (Equation presented) narrow-gap Mott insulators (2013) Nat. Commun., 4, p. 1722
  • Aoki, H., Tsuji, N., Eckstein, M., Kollar, M., Oka, T., Werner, P., Nonequilibrium dynamical mean-field theory and its applications (2014) Rev. Mod. Phys., 86, p. 779
  • Janod, E., Tranchant, J., Corraze, B., Querré, M., Stoliar, P., Rozenberg, M., Cren, T., Cario, L., Resistive switching in Mott insulators and correlated systems (2015) Adv. Funct. Mater., 25, p. 6287
  • Stoliar, P., Rozenberg, M., Janod, E., Corraze, B., Tranchant, J., Cario, L., Nonthermal and purely electronic resistive switching in a Mott memory (2014) Physical Review B, 90, p. 045146
  • Qazilbash, M.M., Brehm, M., Chae, B.-G., Ho, P.-C., Andreev, G.O., Kim, B.-J., Yun, S.J., Basov, D.N., Mott transition in (Equation presented) revealed by infrared spectroscopy and nano-imaging (2007) Science, 318, p. 1750
  • Dubost, V., Cren, T., Vaju, C., Cario, L., Corraze, B., Janod, E., Debontridder, F., Roditchev, D., Resistive Switching at the Nanoscale in the Mott Insulator Compound (Equation presented) (2013) Nano. Lett., 13, p. 3648
  • Camjayi, A., Acha, C., Weht, R., Rodruez, M.G., Corraze, B., Janod, E., Cario, L., Rozenberg, M.J., First-Order Insulator-to-Metal Mott Transition in the Paramagnetic 3D System (Equation presented) (2014) Phys. Rev. Lett., 113, p. 086404
  • Georges, A., Kotliar, G., Krauth, W., Rozenberg, M.J., Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions (1996) Rev. Mod. Phys., 68, p. 13
  • Strogatz, S.H., (2014) Nonlinear Dynamics and Chaos, , (CRC Press, Boca Raton)
  • http://link.aps.org/supplemental/10.1103/PhysRevApplied.10.054001; Wilkinson, A.J., Meaden, G., Dingley, D.J., High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity (2006) Ultramicroscopy, 106, p. 307
  • Rieke, F., Warland, D., De Ruyter Van Steveninck, R., Bialek, W., (1999) Spikes: Exploring the Neural Code, , (MIT Press, Cambridge, MA, USA)
  • Gerstner, W., Kreiter, A.K., Markram, H., Herz, A.V.M., Neural codes: Firing rates and beyond (1997) Proceedings of the National Academy of Sciences, 94, p. 12740
  • Vaju, C., Cario, L., Corraze, B., Janod, E., Dubost, V., Cren, T., Roditchev, D., Chauvet, O., Electric-Pulse-Driven Electronic Phase Separation, Insulator-Metal Transition, and Possible Superconductivity in a Mott Insulator (2008) Advanced Materials, 20, p. 2760
  • Tranchant, J., Janod, E., Corraze, B., Stoliar, P., Rozenberg, M., Besland, M.-P., Cario, L., Control of resistive switching in (Equation presented)∗∗ narrow gap Mott insulators: A first step towards neuromorphic applications (2015) Phys. Stat. Solidi (A), 212, p. 239

Citas:

---------- APA ----------
Tesler, F., Adda, C., Tranchant, J., Corraze, B., Janod, E., Cario, L., Stoliar, P.,..., Rozenberg, M. (2018) . Relaxation of a Spiking Mott Artificial Neuron. Physical Review Applied, 10(5).
http://dx.doi.org/10.1103/PhysRevApplied.10.054001
---------- CHICAGO ----------
Tesler, F., Adda, C., Tranchant, J., Corraze, B., Janod, E., Cario, L., et al. "Relaxation of a Spiking Mott Artificial Neuron" . Physical Review Applied 10, no. 5 (2018).
http://dx.doi.org/10.1103/PhysRevApplied.10.054001
---------- MLA ----------
Tesler, F., Adda, C., Tranchant, J., Corraze, B., Janod, E., Cario, L., et al. "Relaxation of a Spiking Mott Artificial Neuron" . Physical Review Applied, vol. 10, no. 5, 2018.
http://dx.doi.org/10.1103/PhysRevApplied.10.054001
---------- VANCOUVER ----------
Tesler, F., Adda, C., Tranchant, J., Corraze, B., Janod, E., Cario, L., et al. Relaxation of a Spiking Mott Artificial Neuron. Phys. Rev. Appl. 2018;10(5).
http://dx.doi.org/10.1103/PhysRevApplied.10.054001