Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Alternative splicing, as well as chromatin structure, greatly contributes to specific transcriptional programs that promote neuronal differentiation. The activity of G9a, the enzyme responsible for mono- and di-methylation of lysine 9 on histone H3 (H3K9me1 and H3K9me2) in mammalian euchromatin, has been widely implicated in the differentiation of a variety of cell types and tissues. In a recent work from our group (Fiszbein et al., 2016) we have shown that alternative splicing of G9a regulates its nuclear localization and, therefore, the efficiency of H3K9 methylation, which promotes neuronal differentiation. We discuss here our results in the light of a report from other group (Laurent et al. 2015) demonstrating a key role for the alternative splicing of the histone demethylase LSD1 in controlling specific gene expression in neurons. All together, these results illustrate the importance of alternative splicing in the generation of a proper equilibrium between methylation and demethylation of histones for the regulation of neuron-specific transcriptional programs. © 2016 Taylor & Francis.

Registro:

Documento: Artículo
Título:Histone methylation, alternative splicing and neuronal differentiation
Autor:Fiszbein, A.; Kornblihtt, A.R.
Filiación:Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Alternative splicing; Chromatin modifiers; G9a; H3K9me; Neuronal differentiation; cyclic AMP responsive element binding protein binding protein; histone H3; lysine specific demethylase 1; transcription factor; unclassified drug; alternative RNA splicing; cell differentiation; chromatin structure; embryonic stem cell; euchromatin; gene expression regulation; gene mutation; histone demethylation; histone methylation; human; immunofluorescence; nerve cell differentiation; nonhuman; Note; nuclear localization signal; priority journal; regulatory mechanism; RNA processing
Año:2016
Volumen:3
Número:1
DOI: http://dx.doi.org/10.1080/23262133.2016.1204844
Título revista:Neurogenesis
Título revista abreviado:Neurogenesis
ISSN:23262133
CAS:cyclic AMP responsive element binding protein binding protein, 190209-80-4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_23262133_v3_n1_p_Fiszbein

Referencias:

  • Alarcón, J.M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E.R., Barco, A., Chromatin acetylation, memory, and LTP are impaired in CBPC+/– mice: A model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration (2004) Neuron, 42, pp. 947-959. , http://dx.doi.org/10.1016/j.neuron.2004.05.021
  • Barbosa-Morais, N.L., Irimia, M., Pan, Q., Xiong, H.Y., Gueroussov, S., Lee, L.J., Slobodeniuc, V., Colak, R., The evolutionary landscape of alternative splicing in vertebrate species (2012) Sci, 338, pp. 1587-1593. , http://dx.doi.org/10.1126/science.1230612, New York, NY
  • Bittencourt, D., Lee, B.H., Gao, L., Gerke, D.S., Stallcup, M.R., Role of distinct surfaces of the G9a ankyrin repeat domain in histone and DNA methylation during embryonic stem cell self-renewal and differentiation (2014) Epigenetics Chromatin, 7, p. 27. , http://dx.doi.org/10.1186/1756-8935-7-27, PMID:25478012;
  • Borrelli, E., Nestler, E.J., Allis, C.D., Sassone-Corsi, P., Decoding the epigenetic language of neuronal plasticity (2008) Neuron, 60, pp. 961-974. , http://dx.doi.org/10.1016/j.neuron.2008.10.012, PMID:19109904;
  • Brown, S.E., Campbell, R.D., Sanderson, C.M., Novel NG36/G9a gene products encoded within the human and mouse MHC class III regions (2001) Mamm Genome, 12, pp. 916-924. , http://dx.doi.org/10.1007/s00335-001-3029-3, PMID:11707778;
  • Epsztejn-Litman, S., Feldman, N., Abu-Remaileh, M., Shufaro, Y., Gerson, A., Ueda, J., Deplus, R., Cedar, H., De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes (2008) Nat Struct Mol Biol, 15, pp. 1176-1183. , http://dx.doi.org/10.1038/nsmb.1476, PMID:18953337;
  • Feldman, N., Gerson, A., Fang, J., Li, E., Zhang, Y., Shinkai, Y., Cedar, H., Bergman, Y., G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis (2006) Nat Cell Biol, 8, pp. 188-194. , http://dx.doi.org/10.1038/ncb1353, PMID:16415856;
  • Fiszbein, A., Giono, L.E., Quaglino, A., Berardino, B.G., Sigaut, L., Von Bilderling, C., Schor, I.E., Pietrasanta, L.I., Alternative splicing of G9a regulates neuronal differentiation (2016) Cell Rep, 14, pp. 2797-2808. , http://dx.doi.org/10.1016/j.celrep.2016.02.063
  • Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E., Gage, F.H., Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells (2004) Proc Natl Acad Sci U S A, 101, pp. 16659-16664. , http://dx.doi.org/10.1073/pnas.0407643101, PMID:15537713;
  • Inagawa, M., Nakajima, K., Makino, T., Ogawa, S., Kojima, M., Ito, S., Ikenishi, A., Nakamura, K., Histone H3 lysine 9 methyltransferases, G9a and GLP are essential for cardiac morphogenesis (2013) Mech Dev, 130, pp. 519-531. , http://dx.doi.org/10.1016/j.mod.2013.07.002, PMID:23892084;
  • Jiang, Y., Langley, B., Lubin, F.D., Renthal, W., Wood, M.A., Yasui, D.H., Kumar, A., Beckel-Mitchener, A.C., Epigenetics in the nervous system (2008) J Neurosci, 28, pp. 11753-11759. , http://dx.doi.org/10.1523/JNEUROSCI.3797-08.2008, PMID:19005036;
  • Katoh, K., Yamazaki, R., Onishi, A., Sanuki, R., Furukawa, T., G9a histone methyltransferase activity in retinal progenitors is essential for proper differentiation and survival of mouse retinal cells (2012) J Neurosci, 32, pp. 17658-17670. , http://dx.doi.org/10.1523/JNEUROSCI.1869-12.2012, PMID:23223288;
  • Kornblihtt, A.R., Schor, I.E., Alló, M., Dujardin, G., Petrillo, E., Muñoz, M.J., Alternative splicing: A pivotal step between eukaryotic transcription and translation (2013) Nat Rev Mol Cell Biol, 14, pp. 153-165. , http://dx.doi.org/10.1038/nrm3525, PMID:23385723;
  • Kramer, J.M., Kochinke, K., Oortveld, M.A., Marks, H., Kramer, D., De Jong, E.K., Asztalos, Z., Sokolowski, M.B., Epigenetic regulation of learning and memory by Drosophila EHMT/G9a (2011) Plos Biol, 9. , http://dx.doi.org/10.1371/journal.pbio.1000569, PMID:21245904;
  • Laurent, B., Ruitu, L., Murn, J., Hempel, K., Ferrao, R., Xiang, Y., Liu, S., Wu, F., A Specific LSD1/KDM1A isoform regulates neuronal differentiation through H3K9 demethylation (2015) Mol Cell, 57, pp. 957-970. , http://dx.doi.org/10.1016/j.molcel.2015.01.010, PMID:25684206;
  • Lehnertz, B., Northrop, J.P., Antignano, F., Burrows, K., Hadidi, S., Mullaly, S.C., Rossi, F.M., Zaph, C., Activating and inhibitory functions for the histone lysine methyltransferase G9a in T helper cell differentiation and function (2010) J Exp Med, 207, pp. 915-922. , http://dx.doi.org/10.1084/jem.20100363, PMID:20421388;
  • Levenson, J.M., Sweatt, J.D., Epigenetic mechanisms in memory formation (2005) Nat Rev Neurosci, 6, pp. 108-118. , http://dx.doi.org/10.1038/nrn1604, PMID:15654323;
  • Li, Q., Lee, J.A., Black, D.L., Neuronal regulation of alternative pre-mRNA splicing (2007) Nat Rev Neurosci, 8, pp. 819-831. , http://dx.doi.org/10.1038/nrn2237, PMID:17895907;
  • Ling, B.M., Gopinadhan, S., Kok, W.K., Shankar, S.R., Gopal, P., Bharathy, N., Wang, Y., Taneja, R., G9a mediates Sharp-1-dependent inhibition of skeletal muscle differentiation (2012) Mol Biol Cell, 23, pp. 4778-4785. , http://dx.doi.org/10.1091/mbc.E12-04-0311, PMID:23087213;
  • Lois, S., Blanco, N., Martínez-Balbás, M., De La Cruz, X., The functional modulation of epigenetic regulators by alternative splicing (2007) BMC Genomics, 8, p. 252. , http://dx.doi.org/10.1186/1471-2164-8-252, PMID:17651478;
  • Ma, D.K., Chiang, C.H., Ponnusamy, K., Ming, G.L., Song, H., G9a and Jhdm2a regulate embryonic stem cell fusioninduced reprogramming of adult neural stem cells (2008) Stem Cells, 26, pp. 2131-2141. , http://dx.doi.org/10.1634/stemcells.2008-0388, PMID:18535151;
  • Marin-Husstege, M., Muggironi, M., Liu, A., Casaccia-Bonnefil, P., Histone deacetylase activity is necessary for oligodendrocyte lineage progression (2002) J Neurosci, 22, pp. 10333-10345. , PMID:12451133
  • Mauger, O., Klinck, R., Chabot, B., Muchardt, C., Allemand, E., Batsche, E., Alternative splicing regulates the expression of G9A and SUV39H2 methyltransferases, and dramatically changes SUV39H2 functions (2015) Nucleic Acids Res, 43, pp. 1869-1882. , http://dx.doi.org/10.1093/nar/gkv013, PMID:25605796;
  • Maze, I., Chaudhury, D., Dietz, D.M., Von Schimmelmann, M., Kennedy, P.J., Lobo, M.K., Sillivan, S.E., Sun, H., G9a influences neuronal subtype specification in striatum (2014) Nat Neurosci, 17, pp. 533-539. , http://dx.doi.org/10.1038/nn.3670, PMID:24584053;
  • Merkin, J., Russell, C., Chen, P., Burge, C.B., Evolutionary dynamics of gene and isoform regulation in Mammalian tissues (2012) Science, 338, pp. 1593-1599. , http://dx.doi.org/10.1126/science.1228186, PMID:23258891;
  • Ohno, H., Shinoda, K., Ohyama, K., Sharp, L.Z., Kajimura, S., EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex (2013) Nature, 504, pp. 163-167. , http://dx.doi.org/10.1038/nature12652, PMID:24196706;
  • Rathert, P., Dhayalan, A., Murakami, M., Zhang, X., Tamas, R., Jurkowska, R., Komatsu, Y., Jeltsch, A., Protein lysine methyltransferase G9a acts on non-histone targets (2008) Nat Chem Biol, 4, pp. 344-346. , http://dx.doi.org/10.1038/nchembio.88, PMID:18438403;
  • Schaefer, A., Sampath, S.C., Intrator, A., Min, A., Gertler, T.S., Surmeier, D.J., Tarakhovsky, A., Greengard, P., Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex (2009) Neuron, 64, pp. 678-691. , http://dx.doi.org/10.1016/j.neuron.2009.11.019, PMID:20005824;
  • Shinkai, Y., Tachibana, M., H3K9 methyltransferase G9a and the related molecule GLP (2011) Genes Dev, 25, pp. 781-788. , http://dx.doi.org/10.1101/gad.2027411, PMID:21498567;
  • Subbanna, S., Shivakumar, M., Umapathy, N.S., Saito, M., Mohan, P.S., Kumar, A., Nixon, R.A., Basavarajappa, B.S., G9a-mediated histone methylation regulates ethanol-induced neurodegeneration in the neonatal mouse brain (2013) Neurobiol Dis, 54, pp. 475-485. , http://dx.doi.org/10.1016/j.nbd.2013.01.022, PMID: 23396011
  • Surani, M.A., Hayashi, K., Hajkova, P., Genetic and epigenetic regulators of pluripotency (2007) Cell, 128, pp. 747-762. , http://dx.doi.org/10.1016/j.cell.2007.02.010, PMID:17320511;
  • Tachibana, M., Nozaki, M., Takeda, N., Shinkai, Y., Functional dynamics of H3K9 methylation during meiotic prophase progression (2007) EMBO J, 26, pp. 3346-3359. , http://dx.doi.org/10.1038/sj.emboj.7601767, PMID:17599069;
  • Ule, J., Darnell, R.B., RNA binding proteins and the regulation of neuronal synaptic plasticity (2006) Curr Opin Neurobiol, 16, pp. 102-110. , http://dx.doi.org/10.1016/j.conb.2006.01.003, PMID:16418001;
  • Wada, S., Ideno, H., Shimada, A., Kamiunten, T., Nakamura, Y., Nakashima, K., Kimura, H., Nifuji, A., H3K9MTase G9a is essential for the differentiation and growth of tenocytes in vitro (2015) Histochem Cell Biol, 144, pp. 13-20. , http://dx.doi.org/10.1007/s00418-015-1318-2, PMID:25812847;
  • Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S.F., Burge, C.B., Alternative isoform regulation in human tissue transcriptomes (2008) Nature, 456, pp. 470-476. , http://dx.doi.org/10.1038/nature07509, PMID:18978772;
  • Wierda, R.J., Goedhart, M., Van Eggermond, M.C., Muggen, A.F., Miggelbrink, X.M., Geutskens, S.B., Van Zwet, E., Van Den Elsen, P.J., A role for KMT1c in monocyte to dendritic cell differentiation (2015) Hum Immunol, 76, pp. 431-437. , http://dx.doi.org/10.1016/j.humimm.2015.03.017, PMID:25843229;

Citas:

---------- APA ----------
Fiszbein, A. & Kornblihtt, A.R. (2016) . Histone methylation, alternative splicing and neuronal differentiation. Neurogenesis, 3(1).
http://dx.doi.org/10.1080/23262133.2016.1204844
---------- CHICAGO ----------
Fiszbein, A., Kornblihtt, A.R. "Histone methylation, alternative splicing and neuronal differentiation" . Neurogenesis 3, no. 1 (2016).
http://dx.doi.org/10.1080/23262133.2016.1204844
---------- MLA ----------
Fiszbein, A., Kornblihtt, A.R. "Histone methylation, alternative splicing and neuronal differentiation" . Neurogenesis, vol. 3, no. 1, 2016.
http://dx.doi.org/10.1080/23262133.2016.1204844
---------- VANCOUVER ----------
Fiszbein, A., Kornblihtt, A.R. Histone methylation, alternative splicing and neuronal differentiation. Neurogenesis. 2016;3(1).
http://dx.doi.org/10.1080/23262133.2016.1204844