Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Alginate hydrogels are suitable for the encapsulation of a great variety of biomolecules. Several alternatives to the conventional alginate formulation are being studied for a broad range of biotechnological applications; among them the addition of sugars and biopolymers arises as a good and economic strategy. Sugars (trehalose and β-cyclodextrin), a cationic biopolymer (chitosan), an anionic biopolymer (pectin), and neutral gums (Arabic, guar, espina corona, and vinal gums) provided different characteristics to the beads. Here we discuss the influence of beads composition on several physicochemical properties, such as size and shape, analyzed through digital image analysis besides both water content and activity. The results showed that the addition of a second biopolymer, β-CD, or trehalose provoked more compact beads, but the fact that they were compact not necessarily implies a concomitant increase in their circularity. Espina corona beads showed the highest circularity value, being useful for applications which require a controlled and high circularity, assuring quality control. Beads with trehalose showed lower water content than the rest of the system, followed by those containing galactomannans (espina corona, vinal, and guar gums), revealing polymer structure effects. A complete characterization of the beads was performed by FT-IR, assigning the characteristics bands to each individual component. © 2016 Tatiana Aguirre Calvo and Patricio Santagapita.

Registro:

Documento: Artículo
Título:Physicochemical Characterization of Alginate Beads Containing Sugars and Biopolymers
Autor:Aguirre Calvo, T.; Santagapita, P.
Filiación:Industry Department and Organic Chemistry Department, Faculty of Exact and Natural Sciences, University of Buenos Aires (FCEN-UBA), Buenos Aires, Argentina
National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
Año:2016
Volumen:2016
DOI: http://dx.doi.org/10.1155/2016/9184039
Título revista:Journal of Quality and Reliability Engineering
Título revista abreviado:J. Qual. Reliab. Eng.
ISSN:23148055
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_23148055_v2016_n_p_AguirreCalvo

Referencias:

  • Zeeb, B., Saberi, A.H., Weiss, J., McClements D, J., Retention and release of oil-in-water emulsions fromfilled hydrogel beads composed of calcium alginate: Impact of emulsifier type and pH (2015) Soft Matter, 11 (11), pp. 2228-2236
  • Zeeb, B., Saberi, A.H., Weiss, J., McClements, D.J., Formation and characterization of filled hydrogel beads based on calcium alginate: Factors influencing nanoemulsion retention and release (2015) Food Hydrocolloids, 50, pp. 27-36
  • Ribeiro, M.H.L., Afonso, C., Vila-Real, H.J., Alfaia, A.J., Ferreira, L., Contribution of response surface methodology to themodeling of naringin hydrolysis by naringinase Ca-alginate beads under high pressure (2010) LWT-Food Science and Technology, 43 (3), pp. 482-487
  • Chan, E.-S., Lee, B.-B., Ravindra, P., Poncelet, D., Prediction models for shape and size of Ca-alginate macrobeads produced through extrusion-dripping method (2009) Journal of Colloid and Interface Science, 338 (1), pp. 63-72
  • Santagapita, P.R., Mazzobre M, F., Buera, M.D.P., Invertase stability in alginate beads: Effect of trehalose and chitosan inclusion and of drying methods (2012) Food Research International, 47 (2), pp. 321-330
  • Griffith, L.G., Polymeric biomaterials (2000) ActaMaterialia, 48 (1), pp. 263-277
  • Ueng, S.W.N., Lee, M.S., Lin, S.-S., Chan, E.-C., Liu, S.-J., Development of a biodegradable alginate carrier system for antibiotics and bone cells (2007) Journal of Orthopaedic Research, 25 (1), pp. 62-72
  • Elnashar, M.M.M., Danial, E.N., Awad, G.E.A., Novel carrier of grafted alginate for covalent immobilization of inulinase (2009) Industrial and Engineering Chemistry Research, 48 (22), pp. 9781-9785
  • Santagapita, P.R., Mazzobre, M.F., Buera, M.P., Formulation and drying of alginate beads for controlled release and stabilization of invertase (2011) Biomacromolecules, 12 (9), pp. 3147-3155
  • Ponce Cevallos, P.A., Buera, M.P., Elizalde, B.E., Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in-cyclodextrin: Effect of interactions with water on complex stability (2010) Journal of Food Engineering, 99 (1), pp. 70-75
  • Santagapita, P.R., Mazzobre M, F., Buera, M.P., Stabilization and controlled release of invertase through the addition of trehalose in wet and dried alginate-chitosan beads (2015) Water Stress in Biological, Chemical, Pharmaceutical and Food Systems: ISOPOW'11, pp. 353-360. , G. Gutiérrez, G. Barbosa-Cánovas, L. Alamilla, E. Para-Arias, and M. P. Buera, Eds. , Springer
  • Braccini, I., Grasso, R.P., Pérez, S., Conformational and configurational features of acidic polysaccharides and their interactions with calciumions: Amolecular modeling investigation (1999) Carbohydrate Research, 317 (1-4), pp. 119-130
  • Roy, I., Sardar, M., Gupta, M.N., Cross-linked alginate-guar gum beads as fluidized bed affinity media for purification of jacalin (2005) Biochemical Engineering Journal, 23 (3), pp. 193-198
  • Busch, V.M., Kolender, A.A., Santagapita, P.R., Buera, M.P., Vinal gum, a galactomannan from Prosopis ruscifolia seeds: Physicochemical characterization (2015) Food Hydrocolloids, 51, pp. 495-502
  • Busch, V.M., Loosli, F., Santagapita, P.R., Buera, M.P., Stoll, S., Formation of complexes between hematite nanoparticles and a non-conventional galactomannan gum. Toward a better understanding on interaction processes (2015) Science of the Total Environment, 532, pp. 556-563
  • Perduca, M.J., Spotti, M.J., Santiago, L.G., Judis, M.A., Rubiolo, A.C., Carrara, C.R., Rheological characterization of the hydrocolloid from Gleditsia amorphoides seeds (2013) LWT-Food Science and Technology, 51 (1), pp. 143-147
  • Lee, B.-B., Ravindra, P., Chan, E.-S., Size and shape of calcium alginate beads produced by extrusion dripping (2013) Chemical Engineering and Technology, 36 (10), pp. 1627-1642
  • Deladino, L., Anbinder, P.S., Navarro, A.S., Martino M, N., Encapsulation of natural antioxidants extracted from Ilex paraguariensis (2008) Carbohydrate Polymers, 71 (1), pp. 126-134
  • Sankalia, M.G., Mashru R, C., Sankalia, J.M., Sutariya, V.B., Papain entrapment in alginate beads for stability improvement and site-specific delivery: Physicochemical characterization and factorial optimization using neural network modeling (2005) AAPS PharmSciTech, 6 (2), pp. E209-E222
  • Sarmento, B., Ferreira, D., Veiga, F., Ribeiro, A., Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies (2006) Carbohydrate Polymers, 66 (1), pp. 1-7
  • Kacuráková, M., Mathlouthi, M., FTIR and laser-Raman spectra of oligosaccharides in water: Characterization of the glycosidic bond (1996) Carbohydrate Research, 284 (2), pp. 145-157
  • Smitha, B., Sridhar, S., Khan, A.A., Chitosan-sodium alginate polyion complexes as fuel cell membranes (2005) European Polymer Journal, 41 (8), pp. 1859-1866
  • Sinitsya, A., Copková, J., Prutyanov, V., Skoblya, S., MacHovic, V., Amidation of highly methoxylated citrus pectin with primary amines (2000) Carbohydrate Polymers, 42 (4), pp. 359-368
  • Kim, T.H., Park, Y.H., Kim, K.J., Cho, C.S., Release of albumin from chitosan-coated pectin beads in vitro (2003) International Journal of Pharmaceutics, 250 (2), pp. 371-383
  • Paul, S., Mittal, G.S., Regulating the use of degraded oil/fat in deep-fat/oil food frying (1997) Critical Reviews in Food Science and Nutrition, 37 (7), pp. 635-662
  • Pedersen, H.T., Munck, L., Engelsen, S.B., Low-field 1H nuclear magnetic resonance and chemometrics combined for simultaneous determination of water, oil, and protein contents in oilseeds (2000) Journal of the American Oil Chemists' Society, 77 (10), pp. 1069-1076
  • Price, W.S., Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: Part 1. Basic theory (1997) Concepts in Magnetic Resonance, 9 (5), pp. 299-335

Citas:

---------- APA ----------
Aguirre Calvo, T. & Santagapita, P. (2016) . Physicochemical Characterization of Alginate Beads Containing Sugars and Biopolymers. Journal of Quality and Reliability Engineering, 2016.
http://dx.doi.org/10.1155/2016/9184039
---------- CHICAGO ----------
Aguirre Calvo, T., Santagapita, P. "Physicochemical Characterization of Alginate Beads Containing Sugars and Biopolymers" . Journal of Quality and Reliability Engineering 2016 (2016).
http://dx.doi.org/10.1155/2016/9184039
---------- MLA ----------
Aguirre Calvo, T., Santagapita, P. "Physicochemical Characterization of Alginate Beads Containing Sugars and Biopolymers" . Journal of Quality and Reliability Engineering, vol. 2016, 2016.
http://dx.doi.org/10.1155/2016/9184039
---------- VANCOUVER ----------
Aguirre Calvo, T., Santagapita, P. Physicochemical Characterization of Alginate Beads Containing Sugars and Biopolymers. J. Qual. Reliab. Eng. 2016;2016.
http://dx.doi.org/10.1155/2016/9184039