Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present elementary proofs of weighted embedding theorems for radial potential spaces and some generalizations of Ni’s and Strauss’ inequalities in this setting. © Springer International Publishing Switzerland 2016.

Registro:

Documento: Artículo
Título:Elementary proofs of embedding theorems for potential spaces of radial functions
Autor:de Nápoli, P.L.; Drelichman, I.
Filiación:Facultad de Ciencias Exactas y Naturales, IMAS (UBA-CONICET) and Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Embedding theorems; Potential spaces; Power weights; Radial functions; Sobolev spaces
Año:2016
Número:9783319274652
Página de inicio:115
Página de fin:138
DOI: http://dx.doi.org/10.1007/978-3-319-27466-9_8
Título revista:Applied and Numerical Harmonic Analysis
Título revista abreviado:Appl. Numer. Harmon. Anal.
ISSN:22965009
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_22965009_v_n9783319274652_p115_deNapoli

Referencias:

  • Alves, C.O., Figueiredo, G.M., Santos, J.A., Strauss-and Lions-type results for a class of Orlicz-Sobolev spaces and applications. (2014) Topol. Method Nonlinear Anal, 44 (2), pp. 435-456
  • Adams, R., Fournier, J.J.F., Sobolev Spaces, 2nd edn (2003) Pure and Applied Mathematics (Amsterdam), 140. , Elsevier/Academic Press, Amsterdam
  • Aronszajn, N., Smith, K.T., Theory of Bessel potentials (1961) I. Ann. Inst. Fourier (Grenoble), 11, pp. 385-475
  • Bui, H.-Q., Weighted Young’s inequality and convolution theorems on weighted Besov spaces (1994) Math. Nachr, 170, pp. 25-37
  • Calderón, A.P., Lebesgue Spaces of Differentiable Functions and Distributions. (1961) Proceedings of Symposia in Pure Mathematics, 5, pp. 33-49. , American Mathematical Society, Providence, RI
  • Cho, Y., Ozawa, T., Sobolev inequalities with symmetry. (2009) Commun. Contemp. Math, 11, pp. 355-365
  • D’Ancona, P., Luca, R., Stein-Weiss and Caffarelli-Kohn-Nirenberg inequalities with angular integrability (2012) J. Math. Anal. Appl, 388, pp. 1061-1079
  • De Carli, L., On the Lp -Lq norm of the Hankel transform and related operators (2008) J. Math. Anal. Appl, 348, pp. 366-382
  • De Figueiredo, D.G., Moreira Dos Santos, E., Miyagaki, O., Sobolev spaces of symmetric functions and applications (2011) J. Funct. Anal. 261:12, pp. 3735-3770
  • De Figueiredo, D.G., Felmer, P., On superquadratic elliptic systems (1994) Trans. Am.Math. Soc, 343, pp. 99-116
  • De Figueiredo, D.G., Peral, I., Rossi, J., The critical hyperbola for a hamiltonian elliptic system with weights (2008) Annali Di Matematica Pura Ed Applicata Appl., 187, pp. 531-545
  • De Nápoli, P., Drelichman, I., Durán, R.G., Radial solutions for hamiltonian elliptic systems with weights. (2009) Adv. Nonlinear Stud, 9 (3), pp. 579-594
  • De Nápoli, P., Drelichman, I., Durán, R.G., On weighted inequalities for fractional integrals of radial functions. Ill (2011) J. Math., 55 (2), pp. 575-587
  • De Nápoli, P., Drelichman, I., Weighted convolution inequalities for radial functions. (2015) Ann. Mat. Pura Appl, (4), pp. 167-181
  • De Nápoli, P., Drelichman, I., Saintier, N., (2014) Weighted Embedding Theorems for Radial Besov and Triebel-Lizorkin Spaces, Preprint
  • Dinca, G., Jebelean, P., Mawhin, J., Variational and topological methods for Dirichlet problems with p-Laplacian. (2001) Portugaliae Mathematica, 58 (3), pp. 339-378
  • Di Nezza, E., Palatucci, G., Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces (2012) Bull. Sci. Math., 136 (5), pp. 521-573
  • Dorronsoro, J.R., A characterization of potential spaces (1985) Proc. Am.Math. Soc, 95, pp. 21-31
  • Duoandikoetxea, J., Fractional integrals on radial functions with applications to weighted inequalities (2013) Ann. Mat. Pura Appl, 192 (4), pp. 553-568
  • Evans, L.C., Partial Differential Equations (1998) Graduate Studies in Mathematics, 19. , American Mathematical Society, Providence, RI
  • Hanche-Olsen, H., Holden, H., The Kolmogorov-Riesz compactness theorem. Expo (2010) Math. 28:4, pp. 385-394
  • Haroske, D., Piotrowska, I., Atomic decompositions of function spaces with Muckenhoupt weights, and some relation to fractal analysis (2008) Math. Nachr, 281 (10), pp. 1476-1494
  • Haroske, D., Skrzypczak, L., Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights (2008) I. Rev. Mat. Complut, 21 (1), pp. 135-177
  • Haroske, D., Skrzypczak, L., Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights, II. General weights (2011) Ann. Acad. Sci. Fenn. Math, 36 (1), pp. 111-138
  • Kerman, R.A., Convolution theorems with weights. (1983) Trans. Am. Math. Soc, 280 (1), pp. 207-219
  • Kurokawa, T., On the relations between Bessel potential spaces and Riesz potential spaces (2000) Potential Anal, 12 (3), pp. 299-323
  • Lions, P.L., Symétrie e compacité dans les espaces de Sobolev. (1982) J. Funct. Anal, 49, pp. 315-334
  • Martínez, C., Sanz, M., Periago, F., Distributional fractional powers of the Laplacean. Riesz potentials. (1999) Stud. Math, 135 (3), pp. 253-271
  • Meyries, M., Veraar, M., Sharp embedding results for spaces of smooth functions with power weights. (2012) Stud. Math, 208 (3), pp. 257-293
  • Meyries, M., Veraar, M., Characterization of a class of embeddings for function spaces with Muckenhoupt weights. (2014) Arch. Math, 103, pp. 435-449
  • Ni, W.M., A nonlinear Dirichlet problem on the unit ball and its applications. Indiana Univ (1982) Math. J, 31 (6), pp. 801-807
  • Nowak, A., Stempak, K., Potential operators associated with Hankel and Hankel-Dunkl transforms J. Anal. Math. (To Appear)
  • Nursultanov, E., Tikhonov, S., Weighted norm inequalities for convolution and riesz potential (2015) Potential Anal, 42, pp. 435-456
  • Palais, R.S., The principle of symmetric criticality. (1979) Commun. Math. Phys, 69, pp. 19-30
  • Rabinowitz, P., Minimax Methods in Criticalpoint Theory with Applications to Differential Equations (1986) CBMS Regional Conference Series in Mathematics, 65. , American Mathematical Society, RI
  • Rother, W., Some existence theorems for the equation -Δu C K.(x)up =0. (1990) Commun. Partial Differ. Eq, 15, pp. 1461-1473
  • Rubin, B.S., One-dimensional representation, inversion and certain properties of Riesz potentials of radial functions (Russian) (1983) Math. Zametki, 34 (4), pp. 521-533. , [English translation: Math. Notes 34(3-4) 751-757 (1983)]
  • Rubin, B.S., Fractional Integrals and Potentials (1996) Monographs and Surveys in Pure and Applied Mathematics, , Chapman and Hall/CRC, Boca Raton
  • Samko, G., Hypersingular Integrals and Their Applications (2002) Series Analytical Methods and Special Functions, , Taylor & Francis, London
  • Samko, S.G., Kilbas, A.A., Marichev, O.I., (1983) Fractional Integrals and Derivatives, , Gordon and Breach Science, New York
  • Secchi, S., (2014) On Fractional Schrödinger Equations in Rn without the Ambrosetti-Rabinowitz Condition, Preprint
  • Sickel, W., Skrzypczak, L., Radial subspaces of Besov and Lizorkin-Triebel classes: Extended Strauss lemma and compactness of embeddings (2000) J. Fourier Anal. Appl, 6, pp. 639-662
  • Stein, E.M., (1970) Singular Integrals and Differentiability Properties of Functions, , (Princeton University Press, Princeton
  • Stein, E.M., The characterization of functions arising as potentials (1961) Bull. Am.Math. Soc, 67 (1), pp. 1-163
  • Stein, E.M., Weiss, G., Fractional integrals on n-dimensional Euclidean space (1958) J. Math. Mech, 7, pp. 503-514
  • Stein, E.M., Weiss, G., (1971) Introduction to Fourier Analysis on Euclidean Spaces, , (Princeton University Press, Princeton
  • Strauss, W.A., Existence of solitary waves in higher dimensions. (1977) Comm. Math. Phys, 55, pp. 149-162
  • Strichartz, R.S., Multipliers on fractional Sobolev spaces (1967) J.Math.Mech., 16, pp. 1031-1060
  • Su, J., Wang, Z., Willem, M., Weighted Sobolev imbedding with unbounded and decaying radial potentials (2007) J. Differ. Eq, 238, pp. 201-219
  • Triebel, H., Theory of Function Spaces II (1992) Monographs in Mathematics, 84. , Birkhäuser Verlag, Basel
  • Willem, M., (1996) Minimax Theorems, , (Birkhäuser, Boston

Citas:

---------- APA ----------
de Nápoli, P.L. & Drelichman, I. (2016) . Elementary proofs of embedding theorems for potential spaces of radial functions. Applied and Numerical Harmonic Analysis(9783319274652), 115-138.
http://dx.doi.org/10.1007/978-3-319-27466-9_8
---------- CHICAGO ----------
de Nápoli, P.L., Drelichman, I. "Elementary proofs of embedding theorems for potential spaces of radial functions" . Applied and Numerical Harmonic Analysis, no. 9783319274652 (2016) : 115-138.
http://dx.doi.org/10.1007/978-3-319-27466-9_8
---------- MLA ----------
de Nápoli, P.L., Drelichman, I. "Elementary proofs of embedding theorems for potential spaces of radial functions" . Applied and Numerical Harmonic Analysis, no. 9783319274652, 2016, pp. 115-138.
http://dx.doi.org/10.1007/978-3-319-27466-9_8
---------- VANCOUVER ----------
de Nápoli, P.L., Drelichman, I. Elementary proofs of embedding theorems for potential spaces of radial functions. Appl. Numer. Harmon. Anal. 2016(9783319274652):115-138.
http://dx.doi.org/10.1007/978-3-319-27466-9_8